[Bug Fix] Fix package reliability bug of networkx (#949)
* upd
* fig edgebatch edges
* add test
* trigger
* Update README.md for pytorch PinSage example.
Add noting that the PinSage model example under
example/pytorch/recommendation only work with Python 3.6+
as its dataset loader depends on stanfordnlp package
which work only with Python 3.6+.
* Provid a frame agnostic API to test nn modules on both CPU and CUDA side.
1. make dgl.nn.xxx frame agnostic
2. make test.backend include dgl.nn modules
3. modify test_edge_softmax of test/mxnet/test_nn.py and
test/pytorch/test_nn.py work on both CPU and GPU
* Fix style
* Delete unused code
* Make agnostic test only related to tests/backend
1. clear all agnostic related code in dgl.nn
2. make test_graph_conv agnostic to cpu/gpu
* Fix code style
* fix
* doc
* Make all test code under tests.mxnet/pytorch.test_nn.py
work on both CPU and GPU.
* Fix syntex
* Remove rand
* Add TAGCN nn.module and example
* Now tagcn can run on CPU.
* Add unitest for TGConv
* Fix style
* For pubmed dataset, using --lr=0.005 can achieve better acc
* Fix style
* Fix some descriptions
* trigger
* Fix doc
* Add nn.TGConv and example
* Fix bug
* Update data in mxnet.tagcn test acc.
* Fix some comments and code
* delete useless code
* Fix namming
* Fix bug
* Fix bug
* Add test for mxnet TAGCov
* Add test code for mxnet TAGCov
* Update some docs
* Fix some code
* Update docs dgl.nn.mxnet
* Update weight init
* Fix
* reproduce the bug
* Fix concurrency bug reported at #755.
Also make test_shared_mem_store.py more deterministic.
* Update test_shared_mem_store.py
* Update dmlc/core
* networkx >= 2.4 will break our examples
* Update tutorials/requirements
* fix selfloop edges
* upd version
Showing
Please register or sign in to comment