Unverified Commit 7f5da697 authored by Hongzhi (Steve), Chen's avatar Hongzhi (Steve), Chen Committed by GitHub
Browse files

[Misc] Rename number_of_edges and number_of_nodes to num_edges and num_nodes...


[Misc] Rename number_of_edges and number_of_nodes to num_edges and num_nodes in dist related python files. (#5489)
Co-authored-by: default avatarUbuntu <ubuntu@ip-172-31-28-63.ap-northeast-1.compute.internal>
parent 5b409bf7
......@@ -59,8 +59,8 @@ def libra_partition(num_community, G, resultdir):
3. The folder also contains a json file which contains partitions' information.
"""
num_nodes = G.number_of_nodes() # number of nodes
num_edges = G.number_of_edges() # number of edges
num_nodes = G.num_nodes() # number of nodes
num_edges = G.num_edges() # number of edges
print("Number of nodes in the graph: ", num_nodes)
print("Number of edges in the graph: ", num_edges)
......@@ -161,8 +161,8 @@ def libra_partition(num_community, G, resultdir):
part_metadata = {
"graph_name": graph_name,
"num_nodes": G.number_of_nodes(),
"num_edges": G.number_of_edges(),
"num_nodes": G.num_nodes(),
"num_edges": G.num_edges(),
"part_method": part_method,
"num_parts": num_parts,
"halo_hops": num_hops,
......
......@@ -88,7 +88,7 @@ def proteins_mtx2dgl():
g.add_edges(u, v)
n = g.number_of_nodes()
n = g.num_nodes()
feat_size = 128 ## arbitrary number
feats = th.empty([n, feat_size], dtype=th.float32)
......
......@@ -121,7 +121,7 @@ def _get_shared_mem_ndata(g, graph_name, name):
This is called by the DistGraph client to access the node data in the DistGraph server
with shared memory.
"""
shape = (g.number_of_nodes(),)
shape = (g.num_nodes(),)
dtype = RESERVED_FIELD_DTYPE[name]
dtype = DTYPE_DICT[dtype]
data = empty_shared_mem(
......@@ -137,7 +137,7 @@ def _get_shared_mem_edata(g, graph_name, name):
This is called by the DistGraph client to access the edge data in the DistGraph server
with shared memory.
"""
shape = (g.number_of_edges(),)
shape = (g.num_edges(),)
dtype = RESERVED_FIELD_DTYPE[name]
dtype = DTYPE_DICT[dtype]
data = empty_shared_mem(
......@@ -1079,7 +1079,7 @@ class DistGraph:
in_degrees
"""
if is_all(u):
u = F.arange(0, self.number_of_nodes())
u = F.arange(0, self.num_nodes())
return dist_out_degrees(self, u)
def in_degrees(self, v=ALL):
......@@ -1128,7 +1128,7 @@ class DistGraph:
out_degrees
"""
if is_all(v):
v = F.arange(0, self.number_of_nodes())
v = F.arange(0, self.num_nodes())
return dist_in_degrees(self, v)
def node_attr_schemes(self):
......@@ -1281,16 +1281,14 @@ class DistGraph:
for etype, edge in edges.items():
etype = self.to_canonical_etype(etype)
subg[etype] = self.find_edges(edge, etype)
num_nodes = {
ntype: self.number_of_nodes(ntype) for ntype in self.ntypes
}
num_nodes = {ntype: self.num_nodes(ntype) for ntype in self.ntypes}
subg = dgl_heterograph(subg, num_nodes_dict=num_nodes)
for etype in edges:
subg.edges[etype].data[EID] = edges[etype]
else:
assert len(self.etypes) == 1
subg = self.find_edges(edges)
subg = dgl_graph(subg, num_nodes=self.number_of_nodes())
subg = dgl_graph(subg, num_nodes=self.num_nodes())
subg.edata[EID] = edges
if relabel_nodes:
......
......@@ -90,7 +90,7 @@ class DistTensor:
Examples
--------
>>> init = lambda shape, dtype: th.ones(shape, dtype=dtype)
>>> arr = dgl.distributed.DistTensor((g.number_of_nodes(), 2), th.int32, init_func=init)
>>> arr = dgl.distributed.DistTensor((g.num_nodes(), 2), th.int32, init_func=init)
>>> print(arr[0:3])
tensor([[1, 1],
[1, 1],
......
......@@ -525,19 +525,19 @@ def _distributed_access(g, nodes, issue_remote_req, local_access):
results = recv_responses(msgseq2pos)
res_list.extend(results)
sampled_graph = merge_graphs(res_list, g.number_of_nodes())
sampled_graph = merge_graphs(res_list, g.num_nodes())
return sampled_graph
def _frontier_to_heterogeneous_graph(g, frontier, gpb):
# We need to handle empty frontiers correctly.
if frontier.number_of_edges() == 0:
if frontier.num_edges() == 0:
data_dict = {
etype: (np.zeros(0), np.zeros(0)) for etype in g.canonical_etypes
}
return heterograph(
data_dict,
{ntype: g.number_of_nodes(ntype) for ntype in g.ntypes},
{ntype: g.num_nodes(ntype) for ntype in g.ntypes},
idtype=g.idtype,
)
......@@ -561,7 +561,7 @@ def _frontier_to_heterogeneous_graph(g, frontier, gpb):
edge_ids[etype] = F.boolean_mask(eid, type_idx)
hg = heterograph(
data_dict,
{ntype: g.number_of_nodes(ntype) for ntype in g.ntypes},
{ntype: g.num_nodes(ntype) for ntype in g.ntypes},
idtype=g.idtype,
)
......
......@@ -50,7 +50,7 @@ class DistEmbedding:
arr = th.zeros(shape, dtype=dtype)
arr.uniform_(-1, 1)
return arr
>>> emb = dgl.distributed.DistEmbedding(g.number_of_nodes(), 10, init_func=initializer)
>>> emb = dgl.distributed.DistEmbedding(g.num_nodes(), 10, init_func=initializer)
>>> optimizer = dgl.distributed.optim.SparseAdagrad([emb], lr=0.001)
>>> for blocks in dataloader:
... feats = emb(nids)
......
......@@ -748,7 +748,7 @@ def partition_graph(
num_ntypes += len(uniq_ntypes)
else:
g.nodes[key].data["bal_ntype"] = (
F.ones((g.number_of_nodes(key),), F.int32, F.cpu())
F.ones((g.num_nodes(key),), F.int32, F.cpu())
* num_ntypes
)
num_ntypes += 1
......@@ -798,34 +798,33 @@ def partition_graph(
)
)
node_parts = F.zeros((sim_g.number_of_nodes(),), F.int64, F.cpu())
node_parts = F.zeros((sim_g.num_nodes(),), F.int64, F.cpu())
parts = {0: sim_g.clone()}
orig_nids = parts[0].ndata[NID] = F.arange(0, sim_g.number_of_nodes())
orig_eids = parts[0].edata[EID] = F.arange(0, sim_g.number_of_edges())
orig_nids = parts[0].ndata[NID] = F.arange(0, sim_g.num_nodes())
orig_eids = parts[0].edata[EID] = F.arange(0, sim_g.num_edges())
# For one partition, we don't really shuffle nodes and edges. We just need to simulate
# it and set node data and edge data of orig_id.
parts[0].ndata["orig_id"] = orig_nids
parts[0].edata["orig_id"] = orig_eids
if return_mapping:
if g.is_homogeneous:
orig_nids = F.arange(0, sim_g.number_of_nodes())
orig_eids = F.arange(0, sim_g.number_of_edges())
orig_nids = F.arange(0, sim_g.num_nodes())
orig_eids = F.arange(0, sim_g.num_edges())
else:
orig_nids = {
ntype: F.arange(0, g.number_of_nodes(ntype))
for ntype in g.ntypes
ntype: F.arange(0, g.num_nodes(ntype)) for ntype in g.ntypes
}
orig_eids = {
etype: F.arange(0, g.number_of_edges(etype))
etype: F.arange(0, g.num_edges(etype))
for etype in g.canonical_etypes
}
parts[0].ndata["inner_node"] = F.ones(
(sim_g.number_of_nodes(),),
(sim_g.num_nodes(),),
RESERVED_FIELD_DTYPE["inner_node"],
F.cpu(),
)
parts[0].edata["inner_edge"] = F.ones(
(sim_g.number_of_edges(),),
(sim_g.num_edges(),),
RESERVED_FIELD_DTYPE["inner_edge"],
F.cpu(),
)
......@@ -870,7 +869,7 @@ def partition_graph(
)
)
else:
node_parts = random_choice(num_parts, sim_g.number_of_nodes())
node_parts = random_choice(num_parts, sim_g.num_nodes())
start = time.time()
parts, orig_nids, orig_eids = partition_graph_with_halo(
sim_g, node_parts, num_hops, reshuffle=True
......@@ -971,7 +970,7 @@ def partition_graph(
]
)
val = np.cumsum(val).tolist()
assert val[-1] == g.number_of_nodes(ntype)
assert val[-1] == g.num_nodes(ntype)
for etype in g.canonical_etypes:
etype_id = g.get_etype_id(etype)
val = []
......@@ -990,7 +989,7 @@ def partition_graph(
[int(inner_eids[0]), int(inner_eids[-1]) + 1]
)
val = np.cumsum(val).tolist()
assert val[-1] == g.number_of_edges(etype)
assert val[-1] == g.num_edges(etype)
else:
node_map_val = {}
edge_map_val = {}
......@@ -1028,8 +1027,8 @@ def partition_graph(
etypes = {etype: g.get_etype_id(etype) for etype in g.canonical_etypes}
part_metadata = {
"graph_name": graph_name,
"num_nodes": g.number_of_nodes(),
"num_edges": g.number_of_edges(),
"num_nodes": g.num_nodes(),
"num_edges": g.num_edges(),
"part_method": part_method,
"num_parts": num_parts,
"halo_hops": num_hops,
......@@ -1071,7 +1070,7 @@ def partition_graph(
else:
print(
"part {} has {} nodes and {} are inside the partition".format(
part_id, part.number_of_nodes(), len(local_nodes)
part_id, part.num_nodes(), len(local_nodes)
)
)
......@@ -1105,7 +1104,7 @@ def partition_graph(
else:
print(
"part {} has {} edges and {} are inside the partition".format(
part_id, part.number_of_edges(), len(local_edges)
part_id, part.num_edges(), len(local_edges)
)
)
tot_num_inner_edges += len(local_edges)
......@@ -1185,12 +1184,12 @@ def partition_graph(
_dump_part_config(f"{out_path}/{graph_name}.json", part_metadata)
num_cuts = sim_g.number_of_edges() - tot_num_inner_edges
num_cuts = sim_g.num_edges() - tot_num_inner_edges
if num_parts == 1:
num_cuts = 0
print(
"There are {} edges in the graph and {} edge cuts for {} partitions.".format(
g.number_of_edges(), num_cuts, num_parts
g.num_edges(), num_cuts, num_parts
)
)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment