Unverified Commit 7b6af87a authored by Mufei Li's avatar Mufei Li Committed by GitHub
Browse files

Update (#1534)

parent 039fefc2
...@@ -46,6 +46,7 @@ Results ...@@ -46,6 +46,7 @@ Results
| Cora | 84.02(0.40) | 0.0113 | 0.0982 (**8.7x**) | 0.0424 (**3.8x**) | | Cora | 84.02(0.40) | 0.0113 | 0.0982 (**8.7x**) | 0.0424 (**3.8x**) |
| Citeseer | 70.91(0.79) | 0.0111 | n/a | n/a | | Citeseer | 70.91(0.79) | 0.0111 | n/a | n/a |
| Pubmed | 78.57(0.75) | 0.0115 | n/a | n/a | | Pubmed | 78.57(0.75) | 0.0115 | n/a | n/a |
| PPI | 0.9836 | n/a | n/a | n/a |
* All the accuracy numbers are obtained after 300 epochs. * All the accuracy numbers are obtained after 300 epochs.
* The time measures how long it takes to train one epoch. * The time measures how long it takes to train one epoch.
......
...@@ -35,7 +35,7 @@ def evaluate(feats, model, subgraph, labels, loss_fcn): ...@@ -35,7 +35,7 @@ def evaluate(feats, model, subgraph, labels, loss_fcn):
layer.g = subgraph layer.g = subgraph
output = model(feats.float()) output = model(feats.float())
loss_data = loss_fcn(output, labels.float()) loss_data = loss_fcn(output, labels.float())
predict = np.where(output.data.cpu().numpy() >= 0.5, 1, 0) predict = np.where(output.data.cpu().numpy() >= 0., 1, 0)
score = f1_score(labels.data.cpu().numpy(), score = f1_score(labels.data.cpu().numpy(),
predict, average='micro') predict, average='micro')
return score, loss_data.item() return score, loss_data.item()
...@@ -109,7 +109,7 @@ def main(args): ...@@ -109,7 +109,7 @@ def main(args):
val_loss_list.append(val_loss) val_loss_list.append(val_loss)
mean_score = np.array(score_list).mean() mean_score = np.array(score_list).mean()
mean_val_loss = np.array(val_loss_list).mean() mean_val_loss = np.array(val_loss_list).mean()
print("F1-Score: {:.4f} ".format(mean_score)) print("Val F1-Score: {:.4f} ".format(mean_score))
# early stop # early stop
if mean_score > best_score or best_loss > mean_val_loss: if mean_score > best_score or best_loss > mean_val_loss:
if mean_score > best_score and best_loss > mean_val_loss: if mean_score > best_score and best_loss > mean_val_loss:
...@@ -128,7 +128,7 @@ def main(args): ...@@ -128,7 +128,7 @@ def main(args):
feats = feats.to(device) feats = feats.to(device)
labels = labels.to(device) labels = labels.to(device)
test_score_list.append(evaluate(feats, model, subgraph, labels.float(), loss_fcn)[0]) test_score_list.append(evaluate(feats, model, subgraph, labels.float(), loss_fcn)[0])
print("F1-Score: {:.4f}".format(np.array(test_score_list).mean())) print("Test F1-Score: {:.4f}".format(np.array(test_score_list).mean()))
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GAT') parser = argparse.ArgumentParser(description='GAT')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment