Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
7a10bcb6
Unverified
Commit
7a10bcb6
authored
Feb 21, 2024
by
Muhammed Fatih BALIN
Committed by
GitHub
Feb 22, 2024
Browse files
[GraphBolt][Doc] Minor fixes and clarifications. (#7135)
parent
364cb718
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
19 additions
and
12 deletions
+19
-12
python/dgl/graphbolt/base.py
python/dgl/graphbolt/base.py
+6
-6
python/dgl/graphbolt/dataloader.py
python/dgl/graphbolt/dataloader.py
+3
-1
python/dgl/graphbolt/impl/torch_based_feature_store.py
python/dgl/graphbolt/impl/torch_based_feature_store.py
+1
-0
python/dgl/graphbolt/internal/sample_utils.py
python/dgl/graphbolt/internal/sample_utils.py
+5
-5
python/dgl/graphbolt/itemset.py
python/dgl/graphbolt/itemset.py
+4
-0
No files found.
python/dgl/graphbolt/base.py
View file @
7a10bcb6
...
@@ -90,9 +90,9 @@ def expand_indptr(indptr, dtype=None, node_ids=None, output_size=None):
...
@@ -90,9 +90,9 @@ def expand_indptr(indptr, dtype=None, node_ids=None, output_size=None):
argument avoids a stream synchronization to calculate the output shape.
argument avoids a stream synchronization to calculate the output shape.
Returns
Returns
-------
-------
torch.Tensor
torch.Tensor
The converted COO tensor with values from node_ids.
The converted COO tensor with values from node_ids.
"""
"""
assert
indptr
.
dim
()
==
1
,
"Indptr should be 1D tensor."
assert
indptr
.
dim
()
==
1
,
"Indptr should be 1D tensor."
assert
not
(
assert
not
(
...
@@ -127,9 +127,9 @@ def index_select(tensor, index):
...
@@ -127,9 +127,9 @@ def index_select(tensor, index):
The 1-D tensor containing the indices to index.
The 1-D tensor containing the indices to index.
Returns
Returns
-------
-------
torch.Tensor
torch.Tensor
The indexed input tensor, equivalent to tensor[index].
The indexed input tensor, equivalent to tensor[index].
"""
"""
assert
index
.
dim
()
==
1
,
"Index should be 1D tensor."
assert
index
.
dim
()
==
1
,
"Index should be 1D tensor."
return
torch
.
ops
.
graphbolt
.
index_select
(
tensor
,
index
)
return
torch
.
ops
.
graphbolt
.
index_select
(
tensor
,
index
)
...
...
python/dgl/graphbolt/dataloader.py
View file @
7a10bcb6
...
@@ -84,7 +84,9 @@ class DataLoader(torch.utils.data.DataLoader):
...
@@ -84,7 +84,9 @@ class DataLoader(torch.utils.data.DataLoader):
everything after feature fetching in the main process. The datapipe
everything after feature fetching in the main process. The datapipe
is modified in-place as a result.
is modified in-place as a result.
Only works on single GPU.
When the copy_to operation is placed earlier in the data pipeline, the
num_workers argument is required to be 0 as utilizing CUDA in multiple
worker processes is not supported.
Parameters
Parameters
----------
----------
...
...
python/dgl/graphbolt/impl/torch_based_feature_store.py
View file @
7a10bcb6
...
@@ -63,6 +63,7 @@ class TorchBasedFeature(Feature):
...
@@ -63,6 +63,7 @@ class TorchBasedFeature(Feature):
tensor([[1, 2]])
tensor([[1, 2]])
3. Pinned CPU feature.
3. Pinned CPU feature.
>>> torch_feat = torch.arange(10).reshape(2, -1).pin_memory()
>>> torch_feat = torch.arange(10).reshape(2, -1).pin_memory()
>>> feature = gb.TorchBasedFeature(torch_feat)
>>> feature = gb.TorchBasedFeature(torch_feat)
>>> feature.read().device
>>> feature.read().device
...
...
python/dgl/graphbolt/internal/sample_utils.py
View file @
7a10bcb6
...
@@ -32,11 +32,11 @@ def unique_and_compact(
...
@@ -32,11 +32,11 @@ def unique_and_compact(
Returns
Returns
-------
-------
Tuple[unique_nodes, compacted_node_list]
Tuple[unique_nodes, compacted_node_list]
The Unique nodes (per type) of all nodes in the input. And the compacted
The Unique nodes (per type) of all nodes in the input. And the compacted
nodes list, where IDs inside are replaced with compacted node IDs.
nodes list, where IDs inside are replaced with compacted node IDs.
"Compacted node list" indicates that the node IDs in the input node
"Compacted node list" indicates that the node IDs in the input node
list are replaced with mapped node IDs, where each type of node is
list are replaced with mapped node IDs, where each type of node is
mapped to a contiguous space of IDs ranging from 0 to N.
mapped to a contiguous space of IDs ranging from 0 to N.
"""
"""
is_heterogeneous
=
isinstance
(
nodes
,
dict
)
is_heterogeneous
=
isinstance
(
nodes
,
dict
)
...
...
python/dgl/graphbolt/itemset.py
View file @
7a10bcb6
...
@@ -36,6 +36,7 @@ class ItemSet:
...
@@ -36,6 +36,7 @@ class ItemSet:
>>> from dgl import graphbolt as gb
>>> from dgl import graphbolt as gb
1. Integer: number of nodes.
1. Integer: number of nodes.
>>> num = 10
>>> num = 10
>>> item_set = gb.ItemSet(num, names="seed_nodes")
>>> item_set = gb.ItemSet(num, names="seed_nodes")
>>> list(item_set)
>>> list(item_set)
...
@@ -47,6 +48,7 @@ class ItemSet:
...
@@ -47,6 +48,7 @@ class ItemSet:
('seed_nodes',)
('seed_nodes',)
2. Single iterable: seed nodes.
2. Single iterable: seed nodes.
>>> node_ids = torch.arange(0, 5)
>>> node_ids = torch.arange(0, 5)
>>> item_set = gb.ItemSet(node_ids, names="seed_nodes")
>>> item_set = gb.ItemSet(node_ids, names="seed_nodes")
>>> list(item_set)
>>> list(item_set)
...
@@ -57,6 +59,7 @@ class ItemSet:
...
@@ -57,6 +59,7 @@ class ItemSet:
('seed_nodes',)
('seed_nodes',)
3. Tuple of iterables with same shape: seed nodes and labels.
3. Tuple of iterables with same shape: seed nodes and labels.
>>> node_ids = torch.arange(0, 5)
>>> node_ids = torch.arange(0, 5)
>>> labels = torch.arange(5, 10)
>>> labels = torch.arange(5, 10)
>>> item_set = gb.ItemSet(
>>> item_set = gb.ItemSet(
...
@@ -70,6 +73,7 @@ class ItemSet:
...
@@ -70,6 +73,7 @@ class ItemSet:
('seed_nodes', 'labels')
('seed_nodes', 'labels')
4. Tuple of iterables with different shape: node pairs and negative dsts.
4. Tuple of iterables with different shape: node pairs and negative dsts.
>>> node_pairs = torch.arange(0, 10).reshape(-1, 2)
>>> node_pairs = torch.arange(0, 10).reshape(-1, 2)
>>> neg_dsts = torch.arange(10, 25).reshape(-1, 3)
>>> neg_dsts = torch.arange(10, 25).reshape(-1, 3)
>>> item_set = gb.ItemSet(
>>> item_set = gb.ItemSet(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment