"docs/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "acd926f4f208e4cf12be69315787c450da48913b"
Unverified Commit 7156c716 authored by Minjie Wang's avatar Minjie Wang Committed by GitHub
Browse files

[Doc] new at glance doc draft (#214)

* WIP

* new at glance
parent 53ea03ad
...@@ -9,8 +9,9 @@ Zhao <https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang ...@@ -9,8 +9,9 @@ Zhao <https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang
The goal of this tutorial: The goal of this tutorial:
- Understand how DGL builds a graph from a high level. - Understand how DGL builds a graph and performs computation on graph from a
- Perform simple computation on graphs. high level.
- Train a simple graph neural network in DGL to classify nodes in a graph.
At the end of this tutorial, we hope you get a brief feeling of how DGL works. At the end of this tutorial, we hope you get a brief feeling of how DGL works.
""" """
...@@ -25,127 +26,260 @@ At the end of this tutorial, we hope you get a brief feeling of how DGL works. ...@@ -25,127 +26,260 @@ At the end of this tutorial, we hope you get a brief feeling of how DGL works.
# passing and reduction. Through DGL, we hope to benefit both researchers # passing and reduction. Through DGL, we hope to benefit both researchers
# trying out new ideas and engineers in production. # trying out new ideas and engineers in production.
# #
# *This tutorial assumes basic familiarity with networkx.* # *This tutorial assumes basic familiarity with pytorch.*
############################################################################### ###############################################################################
# Building a graph # A toy graph: Zachary's Karate Club
# ---------------- # ----------------------------------
#
# We start by creating the well-knowned "Zachary's karate club" social network.
# The network captures 34 members of a karate club, documenting pairwise links
# between members who interacted outside the club. The club later splits into
# two communities led by the instructor (node 0) and the club president (node
# 33). A visualization of the network and the community is as follows:
#
# .. image:: http://historicaldataninjas.com/wp-content/uploads/2014/05/karate.jpg
# :height: 400px
# :width: 500px
# :align: center
# #
# A graph is built using :class:`~dgl.DGLGraph` class. # Out task is to **build a graph neural network to predict which side each
# Here as a toy example, we define a toy graph with two nodes then assign # member will join.**
# features on nodes and edges:
###############################################################################
# Build the graph
# ---------------
# A graph is built using :class:`~dgl.DGLGraph` class. Here is how we add the 34 members
# and their interaction edges into the graph.
import torch as th
import networkx as nx
import dgl import dgl
def a_boring_graph(): def build_karate_club_graph():
g = dgl.DGLGraph() g = dgl.DGLGraph()
g.add_nodes(2) # add 34 nodes into the graph; nodes are labeled from 0~33
g.add_edge(1, 0) g.add_nodes(34)
# all the 78 edges in a list of tuple
# node and edge features edge_list = [(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2),
x = th.tensor([[0.0, 0.0], [1.0, 2.0]]) (4, 0), (5, 0), (6, 0), (6, 4), (6, 5), (7, 0), (7, 1),
w = th.tensor([2]).float() (7, 2), (7, 3), (8, 0), (8, 2), (9, 2), (10, 0), (10, 4),
g.ndata['x'] = x (10, 5), (11, 0), (12, 0), (12, 3), (13, 0), (13, 1), (13, 2),
g.edata['w'] = w (13, 3), (16, 5), (16, 6), (17, 0), (17, 1), (19, 0), (19, 1),
(21, 0), (21, 1), (25, 23), (25, 24), (27, 2), (27, 23),
(27, 24), (28, 2), (29, 23), (29, 26), (30, 1), (30, 8),
(31, 0), (31, 24), (31, 25), (31, 28), (32, 2), (32, 8),
(32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23),
(32, 29), (32, 30), (32, 31), (33, 8), (33, 9), (33, 13),
(33, 14), (33, 15), (33, 18), (33, 19), (33, 20), (33, 22),
(33, 23), (33, 26), (33, 27), (33, 28), (33, 29), (33, 30),
(33, 31), (33, 32)]
# edges in DGL is added by two list of nodes: src and dst
src, dst = tuple(zip(*edge_list))
g.add_edges(src, dst)
# edges are directional in DGL; make it bi-directional
g.add_edges(dst, src)
return g return g
############################################################################### ###############################################################################
# We can also convert a graph defined by `networkx # We can test it to see we have the correct number of nodes and edges:
# <https://networkx.github.io/documentation/stable/>`_ to DGL:
def an_interesting_graph(): G = build_karate_club_graph()
import networkx as nx print('We have %d nodes.' % G.number_of_nodes())
print('We have %d edges.' % G.number_of_edges())
N = 70 ###############################################################################
g = nx.erdos_renyi_graph(N, 0.1) # We can also visualize it by converting it to a `networkx
g = dgl.DGLGraph(g) # <https://networkx.github.io/documentation/stable/>`_ graph:
x = th.randn(N, 6) import networkx as nx
w = th.randn(g.number_of_edges(), 1) nx_G = G.to_networkx()
g.ndata['x'] = x pos = nx.circular_layout(nx_G)
g.edata['w'] = w nx.draw(nx_G, pos, with_labels=True)
###############################################################################
# Assign features
# ---------------
# Features are tensor data associated with nodes and edges. The features of
# mulitple nodes/edges are batched along the first dimension. Following codes
# assign a one-hot encoding feature for each node in the graph (e.g. :math:`v_i` got
# a feature vector :math:`[0,\ldots,1,\dots,0]`, where the :math:`i^{th}` location is one).
import torch
G.ndata['feat'] = torch.eye(34)
return g
############################################################################### ###############################################################################
# By default, DGLGraph object is directional: # We can print out the node features to verify:
g_boring = a_boring_graph() # print out node 2's input feature
g_better = an_interesting_graph() print(G.nodes[2].data['feat'])
import matplotlib.pyplot as plt # print out node 10 and 11's input features
nx.draw(g_better.to_networkx(), node_size=50, node_color=[[.5, .5, .5,]]) print(G.nodes[[10, 11]].data['feat'])
plt.show()
############################################################################### ###############################################################################
# Define Computation # Define a Graph Convolutional Network (GCN)
# ------------------ # ------------------------------------------
# The canonical functionality of DGL is to provide efficient message passing # To classify whose side each node will join, we adopt the Graph Convolutional
# and merging on graphs. It is implemented by using a message passing interface # Network (GCN) developed by `Kipf and
# powered by the scatter-gather paradigm (i.e. a mailbox metaphor). # Welling <https://arxiv.org/abs/1609.02907>`_. The GCN model can be summarized,
# # in a high-level as follows:
# To give an intuitive example, suppose we have one node :math:`v` , together with
# many incoming edges: :math:`e_i\in\mathcal{N}(v)`. Each node and edge is
# tagged with their own feature. Now, we can perform one iteration of message
# passing and merging by the following routine:
# #
# - Each edge :math:`e_i` passes the information along into the node :math:`v`, by # - Each node :math:`v_i` has a feature vector :math:`h_i`.
# ``send_source``. # - Each node accumulates the feature vectors :math:`h_j` from its neighbors, performs
# - A ``reduce`` operation is triggered to gather these messages # an affine and non-linear transformation to update its own feature.
# sent from the edges, by ``simple_reduce``.
# - ``readout`` function is called eventually to yield the updated feature on
# :math:`v`.
# #
# A graphical demonstration is displayed below, followed by a complete # A graphical demonstration is displayed below.
# implementation.
# #
# .. image:: https://drive.google.com/uc?export=view&id=1rc9cR0Iw96m_wjS55V9LJOJ4RpQBja15 # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/mailbox.png
# :height: 300px
# :width: 400px
# :alt: mailbox # :alt: mailbox
# :align: center # :align: center
# #
# The GCN layer can be easily implemented in DGL using the message passing
# interface. It typically consists of three steps:
#
# 1. Define the message function.
# 2. Define the reduce function.
# 3. Define how they are triggered using message passing APIs (e.g. ``send`` and ``recv``).
#
# Following is how it looks like:
import torch.nn as nn
import torch.nn.functional as F
# Define the message & reduce function
# NOTE: we ignore the normalization constant c_ij for this tutorial.
def gcn_message(edges):
# The argument is a batch of edges.
# This computes a message called 'msg' using the source node's feature 'h'.
return {'msg' : edges.src['h']}
def gcn_reduce(nodes):
# The argument is a batch of nodes.
# This computes the new 'h' features by summing the received 'msg'
# in mailbox.
return {'h' : torch.sum(nodes.mailbox['msg'], dim=1)}
# Define the GCNLayer module
class GCNLayer(nn.Module):
def __init__(self, in_feats, out_feats):
super(GCNLayer, self).__init__()
self.linear = nn.Linear(in_feats, out_feats)
def forward(self, g, inputs):
# g is the graph and the inputs is the input node features
# first set the node features
g.ndata['h'] = inputs
# trigger message passing on all the edges and nodes
g.send(g.edges(), gcn_message)
g.recv(g.nodes(), gcn_reduce)
# get the result node features
h = g.ndata.pop('h')
# perform linear transformation
return self.linear(h)
###############################################################################
# We then define a neural network that contains two GCN layers:
# Define a 2-layer GCN model
class Net(nn.Module):
def __init__(self, in_feats, hidden_size, num_classes):
super(Net, self).__init__()
self.gcn1 = GCNLayer(in_feats, hidden_size)
self.gcn2 = GCNLayer(hidden_size, num_classes)
def forward(self, g, inputs):
h = self.gcn1(g, inputs)
h = torch.relu(h)
h = self.gcn2(g, h)
return h
# input_feature_size=34, hidden_size=5, num_classes=2
net = Net(34, 5, 2)
###############################################################################
# Train the GCN model to predict community
# ----------------------------------------
#
# To prepare the input features and labels, again, we adopt a
# semi-supervised setting. Each node is initialized by an
# one-hot encoding, and only the instructor (node 0) and the club president
# (node 33) are labeled.
inputs = torch.eye(34)
labeled_nodes = torch.tensor([0, 33]) # only the instructor and the president nodes are labeled
labels = torch.tensor([0, 1]) # their labels are different
def super_useful_comp(g): ###############################################################################
# The training loop is no fancier than other NN models. We (1) create an optimizer,
# (2) feed the inputs to the model, (3) calculate the loss and (4) use autograd
# to optimize the model.
def send_source(edges): optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
# 1. pass the source node feature 'x' weighted by edge feature 'w' all_logits = []
return {'msg': edges.src['x'] * edges.data['w']} for epoch in range(30):
logits = net(G, inputs)
# we save the logits for visualization later
all_logits.append(logits.detach())
logp = F.log_softmax(logits, 1)
# we only compute loss for labeled nodes
loss = F.nll_loss(logp[labeled_nodes], labels)
def simple_reduce(nodes): optimizer.zero_grad()
# 2. perform reduction on received messages and update feature 'x' loss.backward()
msgs = nodes.mailbox['msg'] optimizer.step()
return {'x': msgs.sum(1) + nodes.data['x']}
g.register_message_func(send_source) print('Epoch %d | Loss: %.4f' % (epoch, loss.item()))
g.register_reduce_func(simple_reduce)
g.send(g.edges()) ###############################################################################
g.recv(g.nodes()) # Since the model produces a 2-dimensional vector for each node, we can
# visualize it very easily.
import matplotlib.animation as animation
import matplotlib.pyplot as plt
def readout(g): def draw(i):
# 3. read the aggregated node feature 'x' on graph cls1color = '#00FFFF'
return th.sum(g.ndata['x'], dim=0) cls2color = '#FF00FF'
pos = {}
colors = []
for v in range(34):
pos[v] = all_logits[i][v].numpy()
cls = pos[v].argmax()
colors.append(cls1color if cls else cls2color)
ax.cla()
ax.axis('off')
ax.set_title('Epoch: %d' % i)
nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors,
with_labels=True, node_size=300, ax=ax)
############################################################################### ###############################################################################
# See the python wrapper: # We first plot the initial guess before training. As you can see, the nodes
# are not classified correctly.
g_boring = a_boring_graph() fig = plt.figure(dpi=150)
graph_sum = readout(g_boring) fig.clf()
print("graph sum before send() and recv() is: ", graph_sum) ax = fig.subplots()
super_useful_comp(g_boring) draw(0) # draw the prediction of the first epoch
graph_sum = readout(g_boring) plt.close()
print("graph sum after send() and recv() is: ", graph_sum)
g_better = an_interesting_graph() ###############################################################################
graph_sum = readout(g_better) # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/karate0.png
print("graph sum before send() and recv() is: ", graph_sum) # :height: 300px
super_useful_comp(g_better) # :width: 400px
graph_sum = readout(g_better) # :align: center
print("graph sum after send() and recv() is: ", graph_sum)
###############################################################################
# The following animation shows how the model correctly predicts the community
# after training.
ani = animation.FuncAnimation(fig, draw, frames=len(all_logits), interval=200)
###############################################################################
# .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/karate.gif
# :height: 300px
# :width: 400px
# :align: center
############################################################################### ###############################################################################
# Next steps # Next steps
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment