Unverified Commit 6999f88f authored by Tianqi Zhang (张天启)'s avatar Tianqi Zhang (张天启) Committed by GitHub
Browse files

[Model] Add random_start option for Farthest Point Sampler (#2755)



* add random_start option for FPS

* change doc

* change from random_start to start_idx

* change error condition

* change error msg
Co-authored-by: default avatarMinjie Wang <wmjlyjemaine@gmail.com>
parent bcffdb82
...@@ -5,6 +5,7 @@ from mxnet import nd ...@@ -5,6 +5,7 @@ from mxnet import nd
from mxnet.gluon import nn from mxnet.gluon import nn
import numpy as np import numpy as np
from ...base import DGLError
from ..capi import farthest_point_sampler from ..capi import farthest_point_sampler
class FarthestPointSampler(nn.Block): class FarthestPointSampler(nn.Block):
...@@ -24,13 +25,17 @@ class FarthestPointSampler(nn.Block): ...@@ -24,13 +25,17 @@ class FarthestPointSampler(nn.Block):
super(FarthestPointSampler, self).__init__() super(FarthestPointSampler, self).__init__()
self.npoints = npoints self.npoints = npoints
def forward(self, pos): def forward(self, pos, start_idx=None):
r"""Memory allocation and sampling r"""Memory allocation and sampling
Parameters Parameters
---------- ----------
pos : tensor pos : tensor
The positional tensor of shape (B, N, C) The positional tensor of shape (B, N, C)
start_idx : int, optional
If given, appoint the index of the starting point,
otherwise randomly select a point as the start point.
(default: None)
Returns Returns
------- -------
...@@ -41,7 +46,13 @@ class FarthestPointSampler(nn.Block): ...@@ -41,7 +46,13 @@ class FarthestPointSampler(nn.Block):
B, N, C = pos.shape B, N, C = pos.shape
pos = pos.reshape(-1, C) pos = pos.reshape(-1, C)
dist = nd.zeros((B * N), dtype=pos.dtype, ctx=ctx) dist = nd.zeros((B * N), dtype=pos.dtype, ctx=ctx)
start_idx = nd.random.randint(0, N - 1, (B, ), dtype=np.int, ctx=ctx) if start_idx is None:
start_idx = nd.random.randint(0, N - 1, (B, ), dtype=np.int, ctx=ctx)
else:
if start_idx >= N or start_idx < 0:
raise DGLError("Invalid start_idx, expected 0 <= start_idx < {}, got {}".format(
N, start_idx))
start_idx = nd.full((B, ), start_idx, dtype=np.int, ctx=ctx)
result = nd.zeros((self.npoints * B), dtype=np.int, ctx=ctx) result = nd.zeros((self.npoints * B), dtype=np.int, ctx=ctx)
farthest_point_sampler(pos, B, self.npoints, dist, start_idx, result) farthest_point_sampler(pos, B, self.npoints, dist, start_idx, result)
return result.reshape(B, self.npoints) return result.reshape(B, self.npoints)
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
import torch as th import torch as th
from torch import nn from torch import nn
from ...base import DGLError
from ..capi import farthest_point_sampler from ..capi import farthest_point_sampler
class FarthestPointSampler(nn.Module): class FarthestPointSampler(nn.Module):
...@@ -23,13 +24,17 @@ class FarthestPointSampler(nn.Module): ...@@ -23,13 +24,17 @@ class FarthestPointSampler(nn.Module):
super(FarthestPointSampler, self).__init__() super(FarthestPointSampler, self).__init__()
self.npoints = npoints self.npoints = npoints
def forward(self, pos): def forward(self, pos, start_idx=None):
r"""Memory allocation and sampling r"""Memory allocation and sampling
Parameters Parameters
---------- ----------
pos : tensor pos : tensor
The positional tensor of shape (B, N, C) The positional tensor of shape (B, N, C)
start_idx : int, optional
If given, appoint the index of the starting point,
otherwise randomly select a point as the start point.
(default: None)
Returns Returns
------- -------
...@@ -40,7 +45,13 @@ class FarthestPointSampler(nn.Module): ...@@ -40,7 +45,13 @@ class FarthestPointSampler(nn.Module):
B, N, C = pos.shape B, N, C = pos.shape
pos = pos.reshape(-1, C) pos = pos.reshape(-1, C)
dist = th.zeros((B * N), dtype=pos.dtype, device=device) dist = th.zeros((B * N), dtype=pos.dtype, device=device)
start_idx = th.randint(0, N - 1, (B, ), dtype=th.long, device=device) if start_idx is None:
start_idx = th.randint(0, N - 1, (B, ), dtype=th.long, device=device)
else:
if start_idx >= N or start_idx < 0:
raise DGLError("Invalid start_idx, expected 0 <= start_idx < {}, got {}".format(
N, start_idx))
start_idx = th.full((B, ), start_idx, dtype=th.long, device=device)
result = th.zeros((self.npoints * B), dtype=th.long, device=device) result = th.zeros((self.npoints * B), dtype=th.long, device=device)
farthest_point_sampler(pos, B, self.npoints, dist, start_idx, result) farthest_point_sampler(pos, B, self.npoints, dist, start_idx, result)
return result.reshape(B, self.npoints) return result.reshape(B, self.npoints)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment