Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
614007d7
Commit
614007d7
authored
Oct 10, 2023
by
lisj
Browse files
修复numpy.bool
parent
fa71fb44
Changes
12
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
29 additions
and
29 deletions
+29
-29
examples/mxnet/scenegraph/train_freq_prior.py
examples/mxnet/scenegraph/train_freq_prior.py
+1
-1
examples/pytorch/bgrl/eval_function.py
examples/pytorch/bgrl/eval_function.py
+5
-5
examples/pytorch/dimenet/qm9.py
examples/pytorch/dimenet/qm9.py
+1
-1
examples/pytorch/gas/dataloader.py
examples/pytorch/gas/dataloader.py
+3
-3
examples/pytorch/grace/eval.py
examples/pytorch/grace/eval.py
+2
-2
examples/pytorch/graphsaint/utils.py
examples/pytorch/graphsaint/utils.py
+2
-2
examples/pytorch/model_zoo/geometric/coarsening.py
examples/pytorch/model_zoo/geometric/coarsening.py
+1
-1
examples/pytorch/pinsage/data_utils.py
examples/pytorch/pinsage/data_utils.py
+3
-3
python/dgl/backend/mxnet/tensor.py
python/dgl/backend/mxnet/tensor.py
+4
-4
python/dgl/data/fakenews.py
python/dgl/data/fakenews.py
+3
-3
python/dgl/data/fraud.py
python/dgl/data/fraud.py
+3
-3
python/dgl/data/qm9.py
python/dgl/data/qm9.py
+1
-1
No files found.
examples/mxnet/scenegraph/train_freq_prior.py
View file @
614007d7
...
@@ -73,7 +73,7 @@ for _, item in train_data.items():
...
@@ -73,7 +73,7 @@ for _, item in train_data.items():
for
col
,
row
in
zip
(
cols
,
rows
):
for
col
,
row
in
zip
(
cols
,
rows
):
bg_matrix
[
gt_classes
[
col
],
gt_classes
[
row
]]
+=
1
bg_matrix
[
gt_classes
[
col
],
gt_classes
[
row
]]
+=
1
else
:
else
:
all_possib
=
np
.
ones_like
(
iou_mat
,
dtype
=
np
.
bool
)
all_possib
=
np
.
ones_like
(
iou_mat
,
dtype
=
bool
)
np
.
fill_diagonal
(
all_possib
,
0
)
np
.
fill_diagonal
(
all_possib
,
0
)
cols
,
rows
=
np
.
where
(
all_possib
)
cols
,
rows
=
np
.
where
(
all_possib
)
for
col
,
row
in
zip
(
cols
,
rows
):
for
col
,
row
in
zip
(
cols
,
rows
):
...
...
examples/pytorch/bgrl/eval_function.py
View file @
614007d7
...
@@ -11,7 +11,7 @@ def fit_logistic_regression(X, y, data_random_seed=1, repeat=1):
...
@@ -11,7 +11,7 @@ def fit_logistic_regression(X, y, data_random_seed=1, repeat=1):
# transform targets to one-hot vector
# transform targets to one-hot vector
one_hot_encoder
=
OneHotEncoder
(
categories
=
'auto'
,
sparse
=
False
)
one_hot_encoder
=
OneHotEncoder
(
categories
=
'auto'
,
sparse
=
False
)
y
=
one_hot_encoder
.
fit_transform
(
y
.
reshape
(
-
1
,
1
)).
astype
(
np
.
bool
)
y
=
one_hot_encoder
.
fit_transform
(
y
.
reshape
(
-
1
,
1
)).
astype
(
bool
)
# normalize x
# normalize x
X
=
normalize
(
X
,
norm
=
'l2'
)
X
=
normalize
(
X
,
norm
=
'l2'
)
...
@@ -34,7 +34,7 @@ def fit_logistic_regression(X, y, data_random_seed=1, repeat=1):
...
@@ -34,7 +34,7 @@ def fit_logistic_regression(X, y, data_random_seed=1, repeat=1):
y_pred
=
clf
.
predict_proba
(
X_test
)
y_pred
=
clf
.
predict_proba
(
X_test
)
y_pred
=
np
.
argmax
(
y_pred
,
axis
=
1
)
y_pred
=
np
.
argmax
(
y_pred
,
axis
=
1
)
y_pred
=
one_hot_encoder
.
transform
(
y_pred
.
reshape
(
-
1
,
1
)).
astype
(
np
.
bool
)
y_pred
=
one_hot_encoder
.
transform
(
y_pred
.
reshape
(
-
1
,
1
)).
astype
(
bool
)
test_acc
=
metrics
.
accuracy_score
(
y_test
,
y_pred
)
test_acc
=
metrics
.
accuracy_score
(
y_test
,
y_pred
)
accuracies
.
append
(
test_acc
)
accuracies
.
append
(
test_acc
)
...
@@ -44,7 +44,7 @@ def fit_logistic_regression(X, y, data_random_seed=1, repeat=1):
...
@@ -44,7 +44,7 @@ def fit_logistic_regression(X, y, data_random_seed=1, repeat=1):
def
fit_logistic_regression_preset_splits
(
X
,
y
,
train_mask
,
val_mask
,
test_mask
):
def
fit_logistic_regression_preset_splits
(
X
,
y
,
train_mask
,
val_mask
,
test_mask
):
# transform targets to one-hot vector
# transform targets to one-hot vector
one_hot_encoder
=
OneHotEncoder
(
categories
=
'auto'
,
sparse
=
False
)
one_hot_encoder
=
OneHotEncoder
(
categories
=
'auto'
,
sparse
=
False
)
y
=
one_hot_encoder
.
fit_transform
(
y
.
reshape
(
-
1
,
1
)).
astype
(
np
.
bool
)
y
=
one_hot_encoder
.
fit_transform
(
y
.
reshape
(
-
1
,
1
)).
astype
(
bool
)
# normalize x
# normalize x
X
=
normalize
(
X
,
norm
=
'l2'
)
X
=
normalize
(
X
,
norm
=
'l2'
)
...
@@ -67,13 +67,13 @@ def fit_logistic_regression_preset_splits(X, y, train_mask, val_mask, test_mask)
...
@@ -67,13 +67,13 @@ def fit_logistic_regression_preset_splits(X, y, train_mask, val_mask, test_mask)
y_pred
=
clf
.
predict_proba
(
X_val
)
y_pred
=
clf
.
predict_proba
(
X_val
)
y_pred
=
np
.
argmax
(
y_pred
,
axis
=
1
)
y_pred
=
np
.
argmax
(
y_pred
,
axis
=
1
)
y_pred
=
one_hot_encoder
.
transform
(
y_pred
.
reshape
(
-
1
,
1
)).
astype
(
np
.
bool
)
y_pred
=
one_hot_encoder
.
transform
(
y_pred
.
reshape
(
-
1
,
1
)).
astype
(
bool
)
val_acc
=
metrics
.
accuracy_score
(
y_val
,
y_pred
)
val_acc
=
metrics
.
accuracy_score
(
y_val
,
y_pred
)
if
val_acc
>
best_acc
:
if
val_acc
>
best_acc
:
best_acc
=
val_acc
best_acc
=
val_acc
y_pred
=
clf
.
predict_proba
(
X_test
)
y_pred
=
clf
.
predict_proba
(
X_test
)
y_pred
=
np
.
argmax
(
y_pred
,
axis
=
1
)
y_pred
=
np
.
argmax
(
y_pred
,
axis
=
1
)
y_pred
=
one_hot_encoder
.
transform
(
y_pred
.
reshape
(
-
1
,
1
)).
astype
(
np
.
bool
)
y_pred
=
one_hot_encoder
.
transform
(
y_pred
.
reshape
(
-
1
,
1
)).
astype
(
bool
)
best_test_acc
=
metrics
.
accuracy_score
(
y_test
,
y_pred
)
best_test_acc
=
metrics
.
accuracy_score
(
y_test
,
y_pred
)
accuracies
.
append
(
best_test_acc
)
accuracies
.
append
(
best_test_acc
)
...
...
examples/pytorch/dimenet/qm9.py
View file @
614007d7
...
@@ -152,7 +152,7 @@ class QM9(QM9Dataset):
...
@@ -152,7 +152,7 @@ class QM9(QM9Dataset):
# calculate the distance between all atoms
# calculate the distance between all atoms
dist
=
np
.
linalg
.
norm
(
R
[:,
None
,
:]
-
R
[
None
,
:,
:],
axis
=-
1
)
dist
=
np
.
linalg
.
norm
(
R
[:,
None
,
:]
-
R
[
None
,
:,
:],
axis
=-
1
)
# keep all edges that don't exceed the cutoff and delete self-loops
# keep all edges that don't exceed the cutoff and delete self-loops
adj
=
sp
.
csr_matrix
(
dist
<=
self
.
cutoff
)
-
sp
.
eye
(
n_atoms
,
dtype
=
np
.
bool
)
adj
=
sp
.
csr_matrix
(
dist
<=
self
.
cutoff
)
-
sp
.
eye
(
n_atoms
,
dtype
=
bool
)
adj
=
adj
.
tocoo
()
adj
=
adj
.
tocoo
()
u
,
v
=
torch
.
tensor
(
adj
.
row
),
torch
.
tensor
(
adj
.
col
)
u
,
v
=
torch
.
tensor
(
adj
.
row
),
torch
.
tensor
(
adj
.
col
)
g
=
dgl_graph
((
u
,
v
))
g
=
dgl_graph
((
u
,
v
))
...
...
examples/pytorch/gas/dataloader.py
View file @
614007d7
...
@@ -118,9 +118,9 @@ class GASDataset(DGLBuiltinDataset):
...
@@ -118,9 +118,9 @@ class GASDataset(DGLBuiltinDataset):
train_idx
=
index
[:
int
(
train_size
*
num_edges
)]
train_idx
=
index
[:
int
(
train_size
*
num_edges
)]
val_idx
=
index
[
num_edges
-
int
(
val_size
*
num_edges
):]
val_idx
=
index
[
num_edges
-
int
(
val_size
*
num_edges
):]
test_idx
=
index
[
int
(
train_size
*
num_edges
):
num_edges
-
int
(
val_size
*
num_edges
)]
test_idx
=
index
[
int
(
train_size
*
num_edges
):
num_edges
-
int
(
val_size
*
num_edges
)]
train_mask
=
np
.
zeros
(
num_edges
,
dtype
=
np
.
bool
)
train_mask
=
np
.
zeros
(
num_edges
,
dtype
=
bool
)
val_mask
=
np
.
zeros
(
num_edges
,
dtype
=
np
.
bool
)
val_mask
=
np
.
zeros
(
num_edges
,
dtype
=
bool
)
test_mask
=
np
.
zeros
(
num_edges
,
dtype
=
np
.
bool
)
test_mask
=
np
.
zeros
(
num_edges
,
dtype
=
bool
)
train_mask
[
train_idx
]
=
True
train_mask
[
train_idx
]
=
True
val_mask
[
val_idx
]
=
True
val_mask
[
val_idx
]
=
True
test_mask
[
test_idx
]
=
True
test_mask
[
test_idx
]
=
True
...
...
examples/pytorch/grace/eval.py
View file @
614007d7
...
@@ -33,7 +33,7 @@ def repeat(n_times):
...
@@ -33,7 +33,7 @@ def repeat(n_times):
def
prob_to_one_hot
(
y_pred
):
def
prob_to_one_hot
(
y_pred
):
ret
=
np
.
zeros
(
y_pred
.
shape
,
np
.
bool
)
ret
=
np
.
zeros
(
y_pred
.
shape
,
bool
)
indices
=
np
.
argmax
(
y_pred
,
axis
=
1
)
indices
=
np
.
argmax
(
y_pred
,
axis
=
1
)
for
i
in
range
(
y_pred
.
shape
[
0
]):
for
i
in
range
(
y_pred
.
shape
[
0
]):
ret
[
i
][
indices
[
i
]]
=
True
ret
[
i
][
indices
[
i
]]
=
True
...
@@ -58,7 +58,7 @@ def label_classification(embeddings, y, train_mask, test_mask, split='random', r
...
@@ -58,7 +58,7 @@ def label_classification(embeddings, y, train_mask, test_mask, split='random', r
Y
=
y
.
detach
().
cpu
().
numpy
()
Y
=
y
.
detach
().
cpu
().
numpy
()
Y
=
Y
.
reshape
(
-
1
,
1
)
Y
=
Y
.
reshape
(
-
1
,
1
)
onehot_encoder
=
OneHotEncoder
(
categories
=
'auto'
).
fit
(
Y
)
onehot_encoder
=
OneHotEncoder
(
categories
=
'auto'
).
fit
(
Y
)
Y
=
onehot_encoder
.
transform
(
Y
).
toarray
().
astype
(
np
.
bool
)
Y
=
onehot_encoder
.
transform
(
Y
).
toarray
().
astype
(
bool
)
X
=
normalize
(
X
,
norm
=
'l2'
)
X
=
normalize
(
X
,
norm
=
'l2'
)
...
...
examples/pytorch/graphsaint/utils.py
View file @
614007d7
...
@@ -64,11 +64,11 @@ def load_data(args, multilabel):
...
@@ -64,11 +64,11 @@ def load_data(args, multilabel):
prefix
=
"data/{}"
.
format
(
args
.
dataset
)
prefix
=
"data/{}"
.
format
(
args
.
dataset
)
DataType
=
namedtuple
(
'Dataset'
,
[
'num_classes'
,
'train_nid'
,
'g'
])
DataType
=
namedtuple
(
'Dataset'
,
[
'num_classes'
,
'train_nid'
,
'g'
])
adj_full
=
scipy
.
sparse
.
load_npz
(
'./{}/adj_full.npz'
.
format
(
prefix
)).
astype
(
np
.
bool
)
adj_full
=
scipy
.
sparse
.
load_npz
(
'./{}/adj_full.npz'
.
format
(
prefix
)).
astype
(
bool
)
g
=
dgl
.
from_scipy
(
adj_full
)
g
=
dgl
.
from_scipy
(
adj_full
)
num_nodes
=
g
.
num_nodes
()
num_nodes
=
g
.
num_nodes
()
adj_train
=
scipy
.
sparse
.
load_npz
(
'./{}/adj_train.npz'
.
format
(
prefix
)).
astype
(
np
.
bool
)
adj_train
=
scipy
.
sparse
.
load_npz
(
'./{}/adj_train.npz'
.
format
(
prefix
)).
astype
(
bool
)
train_nid
=
np
.
array
(
list
(
set
(
adj_train
.
nonzero
()[
0
])))
train_nid
=
np
.
array
(
list
(
set
(
adj_train
.
nonzero
()[
0
])))
role
=
json
.
load
(
open
(
'./{}/role.json'
.
format
(
prefix
)))
role
=
json
.
load
(
open
(
'./{}/role.json'
.
format
(
prefix
)))
...
...
examples/pytorch/model_zoo/geometric/coarsening.py
View file @
614007d7
...
@@ -152,7 +152,7 @@ def HEM_one_level(rr, cc, vv, rid, weights):
...
@@ -152,7 +152,7 @@ def HEM_one_level(rr, cc, vv, rid, weights):
nnz
=
rr
.
shape
[
0
]
nnz
=
rr
.
shape
[
0
]
N
=
rr
[
nnz
-
1
]
+
1
N
=
rr
[
nnz
-
1
]
+
1
marked
=
np
.
zeros
(
N
,
np
.
bool
)
marked
=
np
.
zeros
(
N
,
bool
)
rowstart
=
np
.
zeros
(
N
,
np
.
int32
)
rowstart
=
np
.
zeros
(
N
,
np
.
int32
)
rowlength
=
np
.
zeros
(
N
,
np
.
int32
)
rowlength
=
np
.
zeros
(
N
,
np
.
int32
)
cluster_id
=
np
.
zeros
(
N
,
np
.
int32
)
cluster_id
=
np
.
zeros
(
N
,
np
.
int32
)
...
...
examples/pytorch/pinsage/data_utils.py
View file @
614007d7
...
@@ -9,9 +9,9 @@ import dask.dataframe as dd
...
@@ -9,9 +9,9 @@ import dask.dataframe as dd
# takes. It essentially follows the intuition of "training on the past and predict the future".
# takes. It essentially follows the intuition of "training on the past and predict the future".
# One can also change the threshold to make validation and test set take larger proportions.
# One can also change the threshold to make validation and test set take larger proportions.
def
train_test_split_by_time
(
df
,
timestamp
,
user
):
def
train_test_split_by_time
(
df
,
timestamp
,
user
):
df
[
'train_mask'
]
=
np
.
ones
((
len
(
df
),),
dtype
=
np
.
bool
)
df
[
'train_mask'
]
=
np
.
ones
((
len
(
df
),),
dtype
=
bool
)
df
[
'val_mask'
]
=
np
.
zeros
((
len
(
df
),),
dtype
=
np
.
bool
)
df
[
'val_mask'
]
=
np
.
zeros
((
len
(
df
),),
dtype
=
bool
)
df
[
'test_mask'
]
=
np
.
zeros
((
len
(
df
),),
dtype
=
np
.
bool
)
df
[
'test_mask'
]
=
np
.
zeros
((
len
(
df
),),
dtype
=
bool
)
df
=
dd
.
from_pandas
(
df
,
npartitions
=
10
)
df
=
dd
.
from_pandas
(
df
,
npartitions
=
10
)
def
train_test_split
(
df
):
def
train_test_split
(
df
):
df
=
df
.
sort_values
([
timestamp
])
df
=
df
.
sort_values
([
timestamp
])
...
...
python/dgl/backend/mxnet/tensor.py
View file @
614007d7
...
@@ -28,13 +28,13 @@ def data_type_dict():
...
@@ -28,13 +28,13 @@ def data_type_dict():
'int16'
:
np
.
int16
,
'int16'
:
np
.
int16
,
'int32'
:
np
.
int32
,
'int32'
:
np
.
int32
,
'int64'
:
np
.
int64
,
'int64'
:
np
.
int64
,
'bool'
:
np
.
bool
}
# mxnet does not support bool
'bool'
:
bool
}
# mxnet does not support bool
def
cpu
():
def
cpu
():
return
mx
.
cpu
()
return
mx
.
cpu
()
def
tensor
(
data
,
dtype
=
None
):
def
tensor
(
data
,
dtype
=
None
):
if
dtype
==
np
.
bool
:
if
dtype
==
bool
:
# mxnet doesn't support bool
# mxnet doesn't support bool
dtype
=
np
.
int32
dtype
=
np
.
int32
if
isinstance
(
data
,
nd
.
NDArray
):
if
isinstance
(
data
,
nd
.
NDArray
):
...
@@ -47,7 +47,7 @@ def tensor(data, dtype=None):
...
@@ -47,7 +47,7 @@ def tensor(data, dtype=None):
data
=
[
data
]
data
=
[
data
]
if
dtype
is
None
:
if
dtype
is
None
:
if
isinstance
(
data
,
np
.
ndarray
):
if
isinstance
(
data
,
np
.
ndarray
):
dtype
=
np
.
int32
if
data
.
dtype
==
np
.
bool
else
data
.
dtype
dtype
=
np
.
int32
if
data
.
dtype
==
bool
else
data
.
dtype
elif
len
(
data
)
==
0
:
elif
len
(
data
)
==
0
:
dtype
=
np
.
int64
dtype
=
np
.
int64
else
:
else
:
...
@@ -133,7 +133,7 @@ def to_backend_ctx(dglctx):
...
@@ -133,7 +133,7 @@ def to_backend_ctx(dglctx):
raise
ValueError
(
'Unsupported DGL device context:'
,
dglctx
)
raise
ValueError
(
'Unsupported DGL device context:'
,
dglctx
)
def
astype
(
input
,
ty
):
def
astype
(
input
,
ty
):
if
ty
==
np
.
bool
:
if
ty
==
bool
:
ty
=
np
.
int32
ty
=
np
.
int32
return
input
.
astype
(
ty
)
return
input
.
astype
(
ty
)
...
...
python/dgl/data/fakenews.py
View file @
614007d7
...
@@ -151,9 +151,9 @@ class FakeNewsDataset(DGLBuiltinDataset):
...
@@ -151,9 +151,9 @@ class FakeNewsDataset(DGLBuiltinDataset):
train_idx
=
np
.
load
(
os
.
path
.
join
(
self
.
raw_path
,
'train_idx.npy'
))
train_idx
=
np
.
load
(
os
.
path
.
join
(
self
.
raw_path
,
'train_idx.npy'
))
val_idx
=
np
.
load
(
os
.
path
.
join
(
self
.
raw_path
,
'val_idx.npy'
))
val_idx
=
np
.
load
(
os
.
path
.
join
(
self
.
raw_path
,
'val_idx.npy'
))
test_idx
=
np
.
load
(
os
.
path
.
join
(
self
.
raw_path
,
'test_idx.npy'
))
test_idx
=
np
.
load
(
os
.
path
.
join
(
self
.
raw_path
,
'test_idx.npy'
))
train_mask
=
np
.
zeros
(
num_graphs
,
dtype
=
np
.
bool
)
train_mask
=
np
.
zeros
(
num_graphs
,
dtype
=
bool
)
val_mask
=
np
.
zeros
(
num_graphs
,
dtype
=
np
.
bool
)
val_mask
=
np
.
zeros
(
num_graphs
,
dtype
=
bool
)
test_mask
=
np
.
zeros
(
num_graphs
,
dtype
=
np
.
bool
)
test_mask
=
np
.
zeros
(
num_graphs
,
dtype
=
bool
)
train_mask
[
train_idx
]
=
True
train_mask
[
train_idx
]
=
True
val_mask
[
val_idx
]
=
True
val_mask
[
val_idx
]
=
True
test_mask
[
test_idx
]
=
True
test_mask
[
test_idx
]
=
True
...
...
python/dgl/data/fraud.py
View file @
614007d7
...
@@ -203,9 +203,9 @@ class FraudDataset(DGLBuiltinDataset):
...
@@ -203,9 +203,9 @@ class FraudDataset(DGLBuiltinDataset):
train_idx
=
index
[:
int
(
train_size
*
len
(
index
))]
train_idx
=
index
[:
int
(
train_size
*
len
(
index
))]
val_idx
=
index
[
len
(
index
)
-
int
(
val_size
*
len
(
index
)):]
val_idx
=
index
[
len
(
index
)
-
int
(
val_size
*
len
(
index
)):]
test_idx
=
index
[
int
(
train_size
*
len
(
index
)):
len
(
index
)
-
int
(
val_size
*
len
(
index
))]
test_idx
=
index
[
int
(
train_size
*
len
(
index
)):
len
(
index
)
-
int
(
val_size
*
len
(
index
))]
train_mask
=
np
.
zeros
(
N
,
dtype
=
np
.
bool
)
train_mask
=
np
.
zeros
(
N
,
dtype
=
bool
)
val_mask
=
np
.
zeros
(
N
,
dtype
=
np
.
bool
)
val_mask
=
np
.
zeros
(
N
,
dtype
=
bool
)
test_mask
=
np
.
zeros
(
N
,
dtype
=
np
.
bool
)
test_mask
=
np
.
zeros
(
N
,
dtype
=
bool
)
train_mask
[
train_idx
]
=
True
train_mask
[
train_idx
]
=
True
val_mask
[
val_idx
]
=
True
val_mask
[
val_idx
]
=
True
test_mask
[
test_idx
]
=
True
test_mask
[
test_idx
]
=
True
...
...
python/dgl/data/qm9.py
View file @
614007d7
...
@@ -182,7 +182,7 @@ class QM9Dataset(DGLDataset):
...
@@ -182,7 +182,7 @@ class QM9Dataset(DGLDataset):
n_atoms
=
self
.
N
[
idx
]
n_atoms
=
self
.
N
[
idx
]
R
=
self
.
R
[
self
.
N_cumsum
[
idx
]:
self
.
N_cumsum
[
idx
+
1
]]
R
=
self
.
R
[
self
.
N_cumsum
[
idx
]:
self
.
N_cumsum
[
idx
+
1
]]
dist
=
np
.
linalg
.
norm
(
R
[:,
None
,
:]
-
R
[
None
,
:,
:],
axis
=-
1
)
dist
=
np
.
linalg
.
norm
(
R
[:,
None
,
:]
-
R
[
None
,
:,
:],
axis
=-
1
)
adj
=
sp
.
csr_matrix
(
dist
<=
self
.
cutoff
)
-
sp
.
eye
(
n_atoms
,
dtype
=
np
.
bool
)
adj
=
sp
.
csr_matrix
(
dist
<=
self
.
cutoff
)
-
sp
.
eye
(
n_atoms
,
dtype
=
bool
)
adj
=
adj
.
tocoo
()
adj
=
adj
.
tocoo
()
u
,
v
=
F
.
tensor
(
adj
.
row
),
F
.
tensor
(
adj
.
col
)
u
,
v
=
F
.
tensor
(
adj
.
row
),
F
.
tensor
(
adj
.
col
)
g
=
dgl_graph
((
u
,
v
))
g
=
dgl_graph
((
u
,
v
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment