DGL NN module is the building block for your GNN model. It inherents
from `Pytorch’s NN Module <https://pytorch.org/docs/1.2.0/_modules/torch/nn/modules/module.html>`__, `MXNet Gluon’s NN Block <http://mxnet.incubator.apache.org/versions/1.6/api/python/docs/api/gluon/nn/index.html>`__ and `TensorFlow’s Keras
Layer <https://www.tensorflow.org/api_docs/python/tf/keras/layers>`__, depending on the DNN framework backend we are using. In DGL NN
Layer <https://www.tensorflow.org/api_docs/python/tf/keras/layers>`__, depending on the DNN framework backend in use. In DGL NN
module, the parameter registration in construction function and tensor
operation in forward function are the same with the backend framework.
In this way, DGL code can be seamlessly integrated into the backend