- MoleculeNet: A Benchmark for Molecular Machine Learning [[paper]](https://arxiv.org/abs/1703.00564), [[website]](http://moleculenet.ai/)
- MoleculeNet: A Benchmark for Molecular Machine Learning [[paper]](https://arxiv.org/abs/1703.00564), [[website]](http://moleculenet.ai/)
-[Tox21 with DGL](https://github.com/dmlc/dgl/tree/master/apps/life_sci/dglls/data/tox21.py)
-[Tox21 with DGL](dgllife/data/tox21.py)
-[PDBBind with DGL](https://github.com/dmlc/dgl/tree/master/apps/life_sci/dglls/data/pdbbind.py)
-[PDBBind with DGL](dgllife/data/pdbbind.py)
- Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models [[paper]](https://arxiv.org/abs/1906.09427), [[github]](https://github.com/tencent-alchemy/Alchemy)
- Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models [[paper]](https://arxiv.org/abs/1906.09427), [[github]](https://github.com/tencent-alchemy/Alchemy)
-[Alchemy with DGL](https://github.com/dmlc/dgl/tree/master/apps/life_sci/dglls/data/alchemy.py)
-[Alchemy with DGL](dgllife/data/alchemy.py)
## Property Prediction
## Property Prediction
- Semi-Supervised Classification with Graph Convolutional Networks (GCN) [[paper]](https://arxiv.org/abs/1609.02907), [[github]](https://github.com/tkipf/gcn)
- Semi-Supervised Classification with Graph Convolutional Networks (GCN) [[paper]](https://arxiv.org/abs/1609.02907), [[github]](https://github.com/tkipf/gcn)
-[GCN-Based Predictor with DGL](https://github.com/dmlc/dgl/tree/master/apps/life_sci/dglls/model/model_zoo/gcn_predictor.py)
-[GCN-Based Predictor with DGL](dgllife/model/model_zoo/gcn_predictor.py)
-[Example for Molecule Classification](https://github.com/dmlc/dgl/tree/master/apps/life_sci/examples/property_prediction/classification.py)
-[Example for Molecule Classification](examples/property_prediction/classification.py)
-[MGCN with DGL](https://github.com/dmlc/dgl/tree/master/apps/life_sci/dglls/model/model_zoo/mgcn_predictor.py)
-[MGCN with DGL](dgllife/model/model_zoo/mgcn_predictor.py)
-[Example for Molecule Regression](https://github.com/dmlc/dgl/tree/master/apps/life_sci/examples/property_prediction/regression.py)
-[Example for Molecule Regression](examples/property_prediction/regression.py)
- Neural Message Passing for Quantum Chemistry (MPNN) [[paper]](https://arxiv.org/abs/1704.01212), [[github]](https://github.com/brain-research/mpnn)
- Neural Message Passing for Quantum Chemistry (MPNN) [[paper]](https://arxiv.org/abs/1704.01212), [[github]](https://github.com/brain-research/mpnn)
-[MPNN with DGL](https://github.com/dmlc/dgl/tree/master/apps/life_sci/dglls/model/model_zoo/mpnn_predictor.py)
-[MPNN with DGL](dgllife/model/model_zoo/mpnn_predictor.py)
-[Example for Molecule Regression](https://github.com/dmlc/dgl/tree/master/apps/life_sci/examples/property_prediction/regression.py)
-[Example for Molecule Regression](examples/property_prediction/regression.py)
- Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism (AttentiveFP) [[paper]](https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00959)
- Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism (AttentiveFP) [[paper]](https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00959)
-[AttentiveFP with DGL](https://github.com/dmlc/dgl/tree/master/apps/life_sci/dglls/model/model_zoo/attentivefp_predictor.py)
-[AttentiveFP with DGL](dgllife/model/model_zoo/attentivefp_predictor.py)
-[Example for Molecule Regression](https://github.com/dmlc/dgl/tree/master/apps/life_sci/examples/property_prediction/regression.py)
-[Example for Molecule Regression](examples/property_prediction/regression.py)
## Generative Models
## Generative Models
- Learning Deep Generative Models of Graphs (DGMG) [[paper]](https://arxiv.org/abs/1803.03324)
- Learning Deep Generative Models of Graphs (DGMG) [[paper]](https://arxiv.org/abs/1803.03324)
-[DGMG with DGL](https://github.com/dmlc/dgl/tree/master/apps/life_sci/dglls/model/model_zoo/dgmg.py)
-[DGMG with DGL](dgllife/model/model_zoo/dgmg.py)
-[Example Training Script](https://github.com/dmlc/dgl/tree/master/apps/life_sci/examples/generative_models/dgmg)
-[Example Training Script](examples/generative_models/dgmg)
- Junction Tree Variational Autoencoder for Molecular Graph Generation (JTNN) [[paper]](https://arxiv.org/abs/1802.04364)
- Junction Tree Variational Autoencoder for Molecular Graph Generation (JTNN) [[paper]](https://arxiv.org/abs/1802.04364)
-[JTNN with DGL](https://github.com/dmlc/dgl/tree/master/apps/life_sci/dglls/model/model_zoo/jtnn)
-[JTNN with DGL](dgllife/model/model_zoo/jtnn)
-[Example Training Script](https://github.com/dmlc/dgl/tree/master/apps/life_sci/examples/generative_models/jtnn)
-[Example Training Script](examples/generative_models/jtnn)
@@ -88,7 +88,9 @@ Below gives the statistics of pre-trained `JTNN_ZINC` model.
...
@@ -88,7 +88,9 @@ Below gives the statistics of pre-trained `JTNN_ZINC` model.
### Visualization
### Visualization
Here we draw some "neighbor" of a given molecule, by adding noises on the intermediate representations. Detailed script can be found [here](https://s3.us-east-2.amazonaws.com/dgl.ai/model_zoo/drug_discovery/jtnn/viz_neighbor_mol.ipynb). Please put this script at the current directory (`examples/pytorch/model_zoo/chem/generative_models/jtnn/`).
Here we draw some "neighbor" of a given molecule, by adding noises on the intermediate representations.
You can download the script with `wget https://data.dgl.ai/dgllife/jtnn_viz_neighbor_mol.ipynb`.
Please put this script at the current directory (`examples/pytorch/model_zoo/chem/generative_models/jtnn/`).