We provide various examples across 3 applications -- property prediction, generative models and protein-ligand binding affinity prediction.
## Datasets/Benchmarks
- MoleculeNet: A Benchmark for Molecular Machine Learning [[paper]](https://arxiv.org/abs/1703.00564), [[website]](http://moleculenet.ai/)
-[Tox21 with DGL](../python/dgllife/data/tox21.py)
-[PDBBind with DGL](../python/dgllife/data/pdbbind.py)
- Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models [[paper]](https://arxiv.org/abs/1906.09427), [[github]](https://github.com/tencent-alchemy/Alchemy)
-[Alchemy with DGL](../python/dgllife/data/alchemy.py)
-[MGCN with DGL](../python/dgllife/model/model_zoo/mgcn_predictor.py)
-[Example for Molecule Regression](property_prediction/regression.py)
- Neural Message Passing for Quantum Chemistry (MPNN) [[paper]](https://arxiv.org/abs/1704.01212), [[github]](https://github.com/brain-research/mpnn)
-[MPNN with DGL](../python/dgllife/model/model_zoo/mpnn_predictor.py)
-[Example for Molecule Regression](property_prediction/regression.py)
- Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism (AttentiveFP) [[paper]](https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00959)
-[AttentiveFP with DGL](../python/dgllife/model/model_zoo/attentivefp_predictor.py)
-[Example for Molecule Regression](property_prediction/regression.py)
## Generative Models
- Learning Deep Generative Models of Graphs (DGMG) [[paper]](https://arxiv.org/abs/1803.03324)
-[DGMG with DGL](../python/dgllife/model/model_zoo/dgmg.py)
-[Example Training Script](generative_models/dgmg)
- Junction Tree Variational Autoencoder for Molecular Graph Generation (JTNN) [[paper]](https://arxiv.org/abs/1802.04364)
-[JTNN with DGL](../python/dgllife/model/model_zoo/jtnn)
-[Example Training Script](generative_models/jtnn)
-[ACNN with DGL](../python/dgllife/model/model_zoo/acnn.py)
-[Example Training Script](binding_affinity_prediction)
## Reaction Prediction
- A graph-convolutional neural network model for the prediction of chemical reactivity [[paper]](https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04228d#!divAbstract), [[github]](https://github.com/connorcoley/rexgen_direct)
- An earlier version was published in NeurIPS 2017 as "Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network" [[paper]](https://arxiv.org/abs/1709.04555)
-[WLN with DGL for Reaction Center Prediction](../python/dgllife/model/model_zoo/wln_reaction_center.py)