"git@developer.sourcefind.cn:OpenDAS/bitsandbytes.git" did not exist on "9b7d307b8cc9d88310fe0c0548e4a0fb094f45d3"
Unverified Commit 358db43a authored by Rhett Ying's avatar Rhett Ying Committed by GitHub
Browse files

[GraphBolt] add notebooks for OnDiskDataset (#6771)

parent 65d83ad7
...@@ -9,9 +9,8 @@ GraphBolt. ...@@ -9,9 +9,8 @@ GraphBolt.
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
:titlesonly:
neighbor_sampling_overview.nblink neighbor_sampling_overview.nblink
node_classification.nblink node_classification.nblink
link_prediction.nblink link_prediction.nblink
ondisk-dataset ondisk-dataset.rst
{
"path": "../../../notebooks/stochastic_training/ondisk_dataset_heterograph.ipynb"
}
{
"path": "../../../notebooks/stochastic_training/ondisk_dataset_homograph.ipynb"
}
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"private_outputs": true,
"provenance": [],
"authorship_tag": "ABX9TyM1zJGR6lVdC9JfDbddFLpa"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# OnDiskDataset for Heterogeneous Graph\n",
"\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_heterograph.ipynb) [![GitHub](https://img.shields.io/badge/-View%20on%20GitHub-181717?logo=github&logoColor=ffffff)](https://github.com/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_heterograph.ipynb)\n",
"\n",
"This tutorial shows how to create `OnDiskDataset` for heterogeneous graph that could be used in **GraphBolt** framework.\n",
"\n",
"By the end of this tutorial, you will be able to\n",
"- organize graph structure data.\n",
"- organize feature data.\n",
"- organize training/validation/test set for specific tasks."
],
"metadata": {
"id": "FnFhPMaAfLtJ"
}
},
{
"cell_type": "markdown",
"source": [
"## Install DGL package"
],
"metadata": {
"id": "Wlb19DtWgtzq"
}
},
{
"cell_type": "code",
"source": [
"# Install required packages.\n",
"import os\n",
"import torch\n",
"import numpy as np\n",
"os.environ['TORCH'] = torch.__version__\n",
"os.environ['DGLBACKEND'] = \"pytorch\"\n",
"\n",
"# Install the CPU version.\n",
"device = torch.device(\"cpu\")\n",
"!pip install --pre dgl -f https://data.dgl.ai/wheels-test/repo.html\n",
"\n",
"try:\n",
" import dgl\n",
" import dgl.graphbolt as gb\n",
" installed = True\n",
"except ImportError as error:\n",
" installed = False\n",
" print(error)\n",
"print(\"DGL installed!\" if installed else \"DGL not found!\")"
],
"metadata": {
"id": "UojlT9ZGgyr9"
},
"execution_count": null,
"outputs": []
}
]
}
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"private_outputs": true,
"provenance": [],
"authorship_tag": "ABX9TyMnOgpk68ZvpOQVFBgDxDof"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# OnDiskDataset for Homogeneous Graph\n",
"\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_homograph.ipynb) [![GitHub](https://img.shields.io/badge/-View%20on%20GitHub-181717?logo=github&logoColor=ffffff)](https://github.com/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_homograph.ipynb)\n",
"\n",
"This tutorial shows how to create `OnDiskDataset` for homogeneous graph that could be used in **GraphBolt** framework.\n",
"\n",
"By the end of this tutorial, you will be able to\n",
"- organize graph structure data.\n",
"- organize feature data.\n",
"- organize training/validation/test set for specific tasks."
],
"metadata": {
"id": "FnFhPMaAfLtJ"
}
},
{
"cell_type": "markdown",
"source": [
"## Install DGL package"
],
"metadata": {
"id": "Wlb19DtWgtzq"
}
},
{
"cell_type": "code",
"source": [
"# Install required packages.\n",
"import os\n",
"import torch\n",
"import numpy as np\n",
"os.environ['TORCH'] = torch.__version__\n",
"os.environ['DGLBACKEND'] = \"pytorch\"\n",
"\n",
"# Install the CPU version.\n",
"device = torch.device(\"cpu\")\n",
"!pip install --pre dgl -f https://data.dgl.ai/wheels-test/repo.html\n",
"\n",
"try:\n",
" import dgl\n",
" import dgl.graphbolt as gb\n",
" installed = True\n",
"except ImportError as error:\n",
" installed = False\n",
" print(error)\n",
"print(\"DGL installed!\" if installed else \"DGL not found!\")"
],
"metadata": {
"id": "UojlT9ZGgyr9"
},
"execution_count": null,
"outputs": []
}
]
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment