Unverified Commit 2ce0e21b authored by Mufei Li's avatar Mufei Li Committed by GitHub
Browse files

Update (#1366)

parent 16627575
...@@ -21,9 +21,15 @@ Depending on the features you want to use, you may need to manually install the ...@@ -21,9 +21,15 @@ Depending on the features you want to use, you may need to manually install the
- RDKit 2018.09.3 - RDKit 2018.09.3
- We recommend installation with `conda install -c conda-forge rdkit==2018.09.3`. For other installation recipes, - We recommend installation with `conda install -c conda-forge rdkit==2018.09.3`. For other installation recipes,
see the [official documentation](https://www.rdkit.org/docs/Install.html). see the [official documentation](https://www.rdkit.org/docs/Install.html).
- (optional) MDTraj
- We recommend installation with `conda install -c conda-forge mdtraj`. For alternative ways of installation, ## Installation
see the [official documentation](http://mdtraj.org/1.9.3/installation.html).
To install the package,
```bash
cd python
python setup.py install
```
## Organization ## Organization
......
...@@ -5,49 +5,49 @@ We provide various examples across 3 applications -- property prediction, genera ...@@ -5,49 +5,49 @@ We provide various examples across 3 applications -- property prediction, genera
## Datasets/Benchmarks ## Datasets/Benchmarks
- MoleculeNet: A Benchmark for Molecular Machine Learning [[paper]](https://arxiv.org/abs/1703.00564), [[website]](http://moleculenet.ai/) - MoleculeNet: A Benchmark for Molecular Machine Learning [[paper]](https://arxiv.org/abs/1703.00564), [[website]](http://moleculenet.ai/)
- [Tox21 with DGL](../dgllife/data/tox21.py) - [Tox21 with DGL](../python/dgllife/data/tox21.py)
- [PDBBind with DGL](../dgllife/data/pdbbind.py) - [PDBBind with DGL](../python/dgllife/data/pdbbind.py)
- Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models [[paper]](https://arxiv.org/abs/1906.09427), [[github]](https://github.com/tencent-alchemy/Alchemy) - Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models [[paper]](https://arxiv.org/abs/1906.09427), [[github]](https://github.com/tencent-alchemy/Alchemy)
- [Alchemy with DGL](../dgllife/data/alchemy.py) - [Alchemy with DGL](../python/dgllife/data/alchemy.py)
## Property Prediction ## Property Prediction
- Semi-Supervised Classification with Graph Convolutional Networks (GCN) [[paper]](https://arxiv.org/abs/1609.02907), [[github]](https://github.com/tkipf/gcn) - Semi-Supervised Classification with Graph Convolutional Networks (GCN) [[paper]](https://arxiv.org/abs/1609.02907), [[github]](https://github.com/tkipf/gcn)
- [GCN-Based Predictor with DGL](../dgllife/model/model_zoo/gcn_predictor.py) - [GCN-Based Predictor with DGL](../python/dgllife/model/model_zoo/gcn_predictor.py)
- [Example for Molecule Classification](property_prediction/classification.py) - [Example for Molecule Classification](property_prediction/classification.py)
- Graph Attention Networks (GAT) [[paper]](https://arxiv.org/abs/1710.10903), [[github]](https://github.com/PetarV-/GAT) - Graph Attention Networks (GAT) [[paper]](https://arxiv.org/abs/1710.10903), [[github]](https://github.com/PetarV-/GAT)
- [GAT-Based Predictor with DGL](../dgllife/model/model_zoo/gat_predictor.py) - [GAT-Based Predictor with DGL](../python/dgllife/model/model_zoo/gat_predictor.py)
- [Example for Molecule Classification](property_prediction/classification.py) - [Example for Molecule Classification](property_prediction/classification.py)
- SchNet: A continuous-filter convolutional neural network for modeling quantum interactions [[paper]](https://arxiv.org/abs/1706.08566), [[github]](https://github.com/atomistic-machine-learning/SchNet) - SchNet: A continuous-filter convolutional neural network for modeling quantum interactions [[paper]](https://arxiv.org/abs/1706.08566), [[github]](https://github.com/atomistic-machine-learning/SchNet)
- [SchNet with DGL](../dgllife/model/model_zoo/schnet_predictor.py) - [SchNet with DGL](../python/dgllife/model/model_zoo/schnet_predictor.py)
- [Example for Molecule Regression](property_prediction/regression.py) - [Example for Molecule Regression](property_prediction/regression.py)
- Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective (MGCN) [[paper]](https://arxiv.org/abs/1906.11081) - Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective (MGCN) [[paper]](https://arxiv.org/abs/1906.11081)
- [MGCN with DGL](../dgllife/model/model_zoo/mgcn_predictor.py) - [MGCN with DGL](../python/dgllife/model/model_zoo/mgcn_predictor.py)
- [Example for Molecule Regression](property_prediction/regression.py) - [Example for Molecule Regression](property_prediction/regression.py)
- Neural Message Passing for Quantum Chemistry (MPNN) [[paper]](https://arxiv.org/abs/1704.01212), [[github]](https://github.com/brain-research/mpnn) - Neural Message Passing for Quantum Chemistry (MPNN) [[paper]](https://arxiv.org/abs/1704.01212), [[github]](https://github.com/brain-research/mpnn)
- [MPNN with DGL](../dgllife/model/model_zoo/mpnn_predictor.py) - [MPNN with DGL](../python/dgllife/model/model_zoo/mpnn_predictor.py)
- [Example for Molecule Regression](property_prediction/regression.py) - [Example for Molecule Regression](property_prediction/regression.py)
- Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism (AttentiveFP) [[paper]](https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00959) - Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism (AttentiveFP) [[paper]](https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00959)
- [AttentiveFP with DGL](../dgllife/model/model_zoo/attentivefp_predictor.py) - [AttentiveFP with DGL](../python/dgllife/model/model_zoo/attentivefp_predictor.py)
- [Example for Molecule Regression](property_prediction/regression.py) - [Example for Molecule Regression](property_prediction/regression.py)
## Generative Models ## Generative Models
- Learning Deep Generative Models of Graphs (DGMG) [[paper]](https://arxiv.org/abs/1803.03324) - Learning Deep Generative Models of Graphs (DGMG) [[paper]](https://arxiv.org/abs/1803.03324)
- [DGMG with DGL](../dgllife/model/model_zoo/dgmg.py) - [DGMG with DGL](../python/dgllife/model/model_zoo/dgmg.py)
- [Example Training Script](generative_models/dgmg) - [Example Training Script](generative_models/dgmg)
- Junction Tree Variational Autoencoder for Molecular Graph Generation (JTNN) [[paper]](https://arxiv.org/abs/1802.04364) - Junction Tree Variational Autoencoder for Molecular Graph Generation (JTNN) [[paper]](https://arxiv.org/abs/1802.04364)
- [JTNN with DGL](../dgllife/model/model_zoo/jtnn) - [JTNN with DGL](../python/dgllife/model/model_zoo/jtnn)
- [Example Training Script](generative_models/jtnn) - [Example Training Script](generative_models/jtnn)
## Binding Affinity Prediction ## Binding Affinity Prediction
- Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity (ACNN) [[paper]](https://arxiv.org/abs/1703.10603), [[github]](https://github.com/deepchem/deepchem/tree/master/contrib/atomicconv) - Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity (ACNN) [[paper]](https://arxiv.org/abs/1703.10603), [[github]](https://github.com/deepchem/deepchem/tree/master/contrib/atomicconv)
- [ACNN with DGL](../dgllife/model/model_zoo/acnn.py) - [ACNN with DGL](../python/dgllife/model/model_zoo/acnn.py)
- [Example Training Script](binding_affinity_prediction) - [Example Training Script](binding_affinity_prediction)
## Reaction Prediction ## Reaction Prediction
- A graph-convolutional neural network model for the prediction of chemical reactivity [[paper]](https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04228d#!divAbstract), [[github]](https://github.com/connorcoley/rexgen_direct) - A graph-convolutional neural network model for the prediction of chemical reactivity [[paper]](https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04228d#!divAbstract), [[github]](https://github.com/connorcoley/rexgen_direct)
- An earlier version was published in NeurIPS 2017 as "Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network" [[paper]](https://arxiv.org/abs/1709.04555) - An earlier version was published in NeurIPS 2017 as "Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network" [[paper]](https://arxiv.org/abs/1709.04555)
- [WLN with DGL for Reaction Center Prediction](../dgllife/model/model_zoo/wln_reaction_center.py) - [WLN with DGL for Reaction Center Prediction](../python/dgllife/model/model_zoo/wln_reaction_center.py)
- [Example Script](reaction_prediction/rexgen_direct) - [Example Script](reaction_prediction/rexgen_direct)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment