Unverified Commit 15ace31a authored by Songqing Zhang's avatar Songqing Zhang Committed by GitHub
Browse files

[Misc] Using the aliases of builtin types like np.int is deprecated (#7300)

parent 2ff3006c
......@@ -60,7 +60,7 @@ def main(args):
labels = labels.data.numpy().tolist()
dev_preds += preds
dev_labels += labels
acc = np.equal(dev_labels, dev_preds).astype(np.float).tolist()
acc = np.equal(dev_labels, dev_preds).astype(float).tolist()
acc = sum(acc) / len(acc)
print(f"Epoch {epoch}, Dev acc {acc}")
......@@ -80,7 +80,7 @@ def main(args):
labels = labels.data.numpy().tolist()
test_preds += preds
test_labels += labels
acc = np.equal(test_labels, test_preds).astype(np.float).tolist()
acc = np.equal(test_labels, test_preds).astype(float).tolist()
acc = sum(acc) / len(acc)
test_acc_list.append(acc)
......
......@@ -40,7 +40,7 @@ def evaluate(gt_labels, pred_labels, metric="pairwise"):
"evaluate with {}{}{}".format(TextColors.FATAL, metric, TextColors.ENDC)
):
result = metric_func(gt_labels, pred_labels)
if isinstance(result, np.float):
if isinstance(result, float):
print(
"{}{}: {:.4f}{}".format(
TextColors.OKGREEN, metric, result, TextColors.ENDC
......
......@@ -68,7 +68,7 @@ def process(dataset):
for attr in re.split("[,\s]+", line.strip("\s\n"))
if attr
],
dtype=np.float,
dtype=float,
)
)
else:
......@@ -130,7 +130,7 @@ def process(dataset):
f[graph.degree[u[0]]] = 1.0
if "label" in u[1]:
f = np.concatenate(
(np.array(u[1]["label"], dtype=np.float), f)
(np.array(u[1]["label"], dtype=float), f)
)
graph.nodes[u[0]]["feat"] = f
return graphs, pprs
......
......@@ -213,13 +213,13 @@ class DeepwalkDataset:
node_degree = self.G.out_degrees(self.valid_seeds).numpy()
node_degree = np.power(node_degree, 0.75)
node_degree /= np.sum(node_degree)
node_degree = np.array(node_degree * 1e8, dtype=np.int)
node_degree = np.array(node_degree * 1e8, dtype=int)
self.neg_table = []
for idx, node in enumerate(self.valid_seeds):
self.neg_table += [node] * node_degree[idx]
self.neg_table_size = len(self.neg_table)
self.neg_table = np.array(self.neg_table, dtype=np.long)
self.neg_table = np.array(self.neg_table, dtype=int)
del node_degree
def create_sampler(self, i):
......
......@@ -209,13 +209,13 @@ class LineDataset:
node_degree = self.G.out_degrees(self.valid_nodes).numpy()
node_degree = np.power(node_degree, 0.75)
node_degree /= np.sum(node_degree)
node_degree = np.array(node_degree * 1e8, dtype=np.int)
node_degree = np.array(node_degree * 1e8, dtype=int)
self.neg_table = []
for idx, node in enumerate(self.valid_nodes):
self.neg_table += [node] * node_degree[idx]
self.neg_table_size = len(self.neg_table)
self.neg_table = np.array(self.neg_table, dtype=np.long)
self.neg_table = np.array(self.neg_table, dtype=int)
del node_degree
def create_sampler(self, i):
......
......@@ -132,7 +132,7 @@ class ShapeNetDataset(Dataset):
[t.split("\n")[0].split(" ") for t in f.readlines()]
).astype(np.float)
data_list.append(data[:, 0 : self.dim])
label_list.append(data[:, 6].astype(np.int))
label_list.append(data[:, 6].astype(int))
category_list.append(shapenet.synset_dict[fn.split("/")[-2]])
self.data = data_list
self.label = label_list
......@@ -157,5 +157,5 @@ class ShapeNetDataset(Dataset):
if self.mode == "train":
x = self.translate(x, size=self.dim)
x = x.astype(np.float)
y = y.astype(np.int)
y = y.astype(int)
return x, y, cat
......@@ -130,9 +130,9 @@ class ShapeNetDataset(Dataset):
with open(fn) as f:
data = np.array(
[t.split("\n")[0].split(" ") for t in f.readlines()]
).astype(np.float)
).astype(float)
data_list.append(data[:, 0 : self.dim])
label_list.append(data[:, 6].astype(np.int))
label_list.append(data[:, 6].astype(int))
category_list.append(shapenet.synset_dict[fn.split("/")[-2]])
self.data = data_list
self.label = label_list
......@@ -156,6 +156,6 @@ class ShapeNetDataset(Dataset):
cat = self.category[i]
if self.mode == "train":
x = self.translate(x, size=self.dim)
x = x.astype(np.float)
y = y.astype(np.int)
x = x.astype(float)
y = y.astype(int)
return x, y, cat
......@@ -130,9 +130,9 @@ class ShapeNetDataset(Dataset):
with open(fn) as f:
data = np.array(
[t.split("\n")[0].split(" ") for t in f.readlines()]
).astype(np.float)
).astype(float)
data_list.append(data[:, 0 : self.dim])
label_list.append(data[:, 6].astype(np.int))
label_list.append(data[:, 6].astype(int))
category_list.append(shapenet.synset_dict[fn.split("/")[-2]])
self.data = data_list
self.label = label_list
......@@ -156,6 +156,6 @@ class ShapeNetDataset(Dataset):
cat = self.category[i]
if self.mode == "train":
x = self.translate(x, size=self.dim)
x = x.astype(np.float)
y = y.astype(np.int)
x = x.astype(float)
y = y.astype(int)
return x, y, cat
......@@ -13,7 +13,7 @@ def solve_sudoku(puzzle):
:param puzzle: an array-like data with shape [9, 9], blank positions are filled with 0
:return: a [9, 9] shaped numpy array
"""
puzzle = np.array(puzzle, dtype=np.long).reshape([-1])
puzzle = np.array(puzzle, dtype=int).reshape([-1])
model_path = "ckpt"
if not os.path.exists(model_path):
os.mkdir(model_path)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment