• xiang song(charlie.song)'s avatar
    [KG] Update CI to cover Knowledge Graph (#913) · 93e3c49d
    xiang song(charlie.song) authored
    * upd
    
    * fig edgebatch edges
    
    * add test
    
    * trigger
    
    * Update README.md for pytorch PinSage example.
    
    Add noting that the PinSage model example under
    example/pytorch/recommendation only work with Python 3.6+
    as its dataset loader depends on stanfordnlp package
    which work only with Python 3.6+.
    
    * Provid a frame agnostic API to test nn modules on both CPU and CUDA side.
    
    1. make dgl.nn.xxx frame agnostic
    2. make test.backend include dgl.nn modules
    3. modify test_edge_softmax of test/mxnet/test_nn.py and
        test/pytorch/test_nn.py work on both CPU and GPU
    
    * Fix style
    
    * Delete unused code
    
    * Make agnostic test only related to tests/backend
    
    1. clear all agnostic related code in dgl.nn
    2. make test_graph_conv agnostic to cpu/gpu
    
    * Fix code style
    
    * fix
    
    * doc
    
    * Make all test code under tests.mxnet/pytorch.test_nn.py
    work on both CPU and GPU.
    
    * Fix syntex
    
    * Remove rand
    
    * Add TAGCN nn.module and example
    
    * Now tagcn can run on CPU.
    
    * Add unitest for TGConv
    
    * Fix style
    
    * For pubmed dataset, using --lr=0.005 can achieve better acc
    
    * Fix style
    
    * Fix some descriptions
    
    * trigger
    
    * Fix doc
    
    * Add nn.TGConv and example
    
    * Fix bug
    
    * Update data in mxnet.tagcn test acc.
    
    * Fix some comments and code
    
    * delete useless code
    
    * Fix namming
    
    * Fix bug
    
    * Fix bug
    
    * Add test for mxnet TAGCov
    
    * Add test code for mxnet TAGCov
    
    * Update some docs
    
    * Fix some code
    
    * Update docs dgl.nn.mxnet
    
    * Update weight init
    
    * Fix
    
    * reproduce the bug
    
    * Fix concurrency bug reported at #755.
    Also make test_shared_mem_store.py more deterministic.
    
    * Update test_shared_mem_store.py
    
    * Update dmlc/core
    
    * Update Knowledge Graph CI with new Docker image
    
    * Remove unused line_profierx
    
    * Poke Jenkins
    
    * Update test with exit code check and simplify docker
    
    * Update Jenkinsfile to make app test a standalone stage
    
    * Update kg_test
    
    * Update Jenkinsfile
    
    * Make some KG test parallel
    
    * Update
    
    * KG MXNet does not support ComplEx
    
    * Update Jenkinsfile
    
    * Update Jenkins file
    
    * Change torch-1.2 to torch-1.2-cu92
    
    * ci
    
    * Update ubuntu_install_mxnet_cpu.sh
    
    * Update ubuntu_install_mxnet_gpu.sh
    
    * We only need to test train and eval script.
    Delete some test code
    93e3c49d
task_kg_test.sh 2.33 KB