modules.py 6.73 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import math
import dgl.function as fn
from dgl.nn.pytorch import edge_softmax
from utlis import *
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence,pad_packed_sequence


class MSA(nn.Module):
    # multi-head self-attention, three modes
    # the first is the copy, determining which entity should be copied.
    # the second is the normal attention with two sequence inputs
    # the third is the attention but with one token and a sequence. (gather, attentive pooling)
    
    def __init__(self, args, mode='normal'):
        super(MSA, self).__init__()
        if mode=='copy':
            nhead, head_dim = 1, args.nhid
            qninp, kninp = args.dec_ninp, args.nhid
        if mode=='normal':
            nhead, head_dim = args.nhead, args.head_dim
            qninp, kninp = args.nhid, args.nhid
        self.attn_drop = nn.Dropout(0.1)
        self.WQ = nn.Linear(qninp, nhead*head_dim, bias=True if mode=='copy' else False)
        if mode!='copy':
            self.WK = nn.Linear(kninp, nhead*head_dim, bias=False)
            self.WV = nn.Linear(kninp, nhead*head_dim, bias=False)
        self.args, self.nhead, self.head_dim, self.mode = args, nhead, head_dim, mode

    def forward(self, inp1, inp2, mask=None):
        B, L2, H = inp2.shape
        NH, HD = self.nhead, self.head_dim
        if self.mode=='copy':
            q, k, v = self.WQ(inp1), inp2, inp2
        else:
            q, k, v = self.WQ(inp1), self.WK(inp2), self.WV(inp2)
        L1 = 1 if inp1.ndim==2 else inp1.shape[1]
        if self.mode!='copy':
            q = q / math.sqrt(H)
        q = q.view(B, L1, NH, HD).permute(0, 2, 1, 3) 
        k = k.view(B, L2, NH, HD).permute(0, 2, 3, 1)
        v = v.view(B, L2, NH, HD).permute(0, 2, 1, 3)
        pre_attn = torch.matmul(q,k)
        if mask is not None:
            pre_attn = pre_attn.masked_fill(mask[:,None,None,:], -1e8)
        if self.mode=='copy':
            return pre_attn.squeeze(1)
        else:
            alpha = self.attn_drop(torch.softmax(pre_attn, -1))
            attn = torch.matmul(alpha, v).permute(0, 2, 1, 3).contiguous().view(B,L1,NH*HD)
            ret = attn
            if inp1.ndim==2:
                return ret.squeeze(1)
            else:
                return ret


class BiLSTM(nn.Module):
    # for entity encoding or the title encoding
    def __init__(self, args, enc_type='title'):
        super(BiLSTM, self).__init__()
        self.enc_type = enc_type
        self.drop = nn.Dropout(args.emb_drop)
        self.bilstm = nn.LSTM(args.nhid, args.nhid//2, bidirectional=True, \
                num_layers=args.enc_lstm_layers, batch_first=True)
 
    def forward(self, inp, mask, ent_len=None):
        inp = self.drop(inp)
        lens = (mask==0).sum(-1).long().tolist()
        pad_seq = pack_padded_sequence(inp, lens, batch_first=True, enforce_sorted=False)
        y, (_h, _c) = self.bilstm(pad_seq)
        if self.enc_type=='title':
            y = pad_packed_sequence(y, batch_first=True)[0]
            return y
        if self.enc_type=='entity':
            _h = _h.transpose(0,1).contiguous()
            _h = _h[:,-2:].view(_h.size(0), -1) # two directions of the top-layer
            ret = pad(_h.split(ent_len), out_type='tensor')
            return ret


class GAT(nn.Module):
    # a graph attention network with dot-product attention
    def __init__(self,
                 in_feats,
                 out_feats,
                 num_heads,
                 ffn_drop=0.,
                 attn_drop=0.,
                 trans=True):
        super(GAT, self).__init__()
        self._num_heads = num_heads
        self._in_feats = in_feats
        self._out_feats = out_feats
        self.q_proj = nn.Linear(in_feats, num_heads*out_feats, bias=False)
        self.k_proj = nn.Linear(in_feats, num_heads*out_feats, bias=False)
        self.v_proj = nn.Linear(in_feats, num_heads*out_feats, bias=False)
        self.attn_drop = nn.Dropout(0.1)
        self.ln1 = nn.LayerNorm(in_feats)
        self.ln2 = nn.LayerNorm(in_feats)
        if trans:
            self.FFN = nn.Sequential(
                nn.Linear(in_feats, 4*in_feats),
                nn.PReLU(4*in_feats),
                nn.Linear(4*in_feats, in_feats),
                nn.Dropout(0.1),
            )
            # a strange FFN, see the author's code
        self._trans = trans

    def forward(self, graph, feat):
        graph = graph.local_var()
        feat_c = feat.clone().detach().requires_grad_(False)
        q, k, v = self.q_proj(feat), self.k_proj(feat_c), self.v_proj(feat_c)
        q = q.view(-1, self._num_heads, self._out_feats)
        k = k.view(-1, self._num_heads, self._out_feats)
        v = v.view(-1, self._num_heads, self._out_feats)
        graph.ndata.update({'ft': v, 'el': k, 'er': q}) # k,q instead of q,k, the edge_softmax is applied on incoming edges
        # compute edge attention
        graph.apply_edges(fn.u_dot_v('el', 'er', 'e'))
        e =  graph.edata.pop('e') / math.sqrt(self._out_feats * self._num_heads)
        graph.edata['a'] = edge_softmax(graph, e).unsqueeze(-1)
       # message passing
        graph.update_all(fn.u_mul_e('ft', 'a', 'm'),
                         fn.sum('m', 'ft2'))
        rst = graph.ndata['ft2']
        # residual
        rst = rst.view(feat.shape) + feat
        if self._trans:
            rst = self.ln1(rst)
            rst = self.ln1(rst+self.FFN(rst))
            # use the same layer norm, see the author's code
        return rst


class GraphTrans(nn.Module):
    def __init__(self,args):
        super().__init__()
        self.args = args
        if args.graph_enc == "gat":
            # we only support gtrans, don't use this one
            self.gat = nn.ModuleList([GAT(args.nhid, args.nhid//4, 4, attn_drop=args.attn_drop, trans=False) for _ in range(args.prop)]) #untested
        else:
            self.gat = nn.ModuleList([GAT(args.nhid, args.nhid//4, 4, attn_drop=args.attn_drop, ffn_drop=args.drop, trans=True) for _ in range(args.prop)])
        self.prop = args.prop

    def forward(self, ent, ent_mask, ent_len, rel, rel_mask, graphs):
        device = ent.device
        ent_mask = (ent_mask==0) # reverse mask
        rel_mask = (rel_mask==0)
        init_h = []
        for i in range(graphs.batch_size):
            init_h.append(ent[i][ent_mask[i]])
            init_h.append(rel[i][rel_mask[i]])
        init_h = torch.cat(init_h, 0)
        feats = init_h
        for i in range(self.prop):
            feats = self.gat[i](graphs, feats)
        g_root = feats.index_select(0, graphs.filter_nodes(lambda x: x.data['type']==NODE_TYPE['root']).to(device))
        g_ent = pad(feats.index_select(0, graphs.filter_nodes(lambda x: x.data['type']==NODE_TYPE['entity']).to(device)).split(ent_len), out_type='tensor')
        return g_ent, g_root