test_hetero_basics.py 29 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
6
7
"""Test from `test_basics.py` but for heterograph. Merge this
with `test_basics.py` once DGLHeteroGraph is compatible with DGLGraph.
"""
import backend as F
import dgl
import networkx as nx
from collections import defaultdict as ddict
VoVAllen's avatar
VoVAllen committed
8
import unittest
9
10
11
import pytest
import inspect
from utils import parametrize_dtype
Minjie Wang's avatar
Minjie Wang committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

D = 5
reduce_msg_shapes = set()

def message_func(edges):
    assert F.ndim(edges.src['h']) == 2
    assert F.shape(edges.src['h'])[1] == D
    return {'m' : edges.src['h']}

def reduce_func(nodes):
    msgs = nodes.mailbox['m']
    reduce_msg_shapes.add(tuple(msgs.shape))
    assert F.ndim(msgs) == 3
    assert F.shape(msgs)[2] == D
    return {'accum' : F.sum(msgs, 1)}

def apply_node_func(nodes):
    return {'h' : nodes.data['h'] + nodes.data['accum']}

31
def generate_graph(index_dtype='int64', grad=False):
Minjie Wang's avatar
Minjie Wang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
    0, 2, 2
    2, 9, 3
    0, 3, 4
    3, 9, 5
    0, 4, 6
    4, 9, 7
    0, 5, 8
    5, 9, 9
    0, 6, 10
    6, 9, 11
    0, 7, 12
    7, 9, 13
    0, 8, 14
    8, 9, 15
    9, 0, 16
    '''
    g = dgl.graph([(0,1), (1,9), (0,2), (2,9), (0,3), (3,9), (0,4), (4,9),
53
                   (0,5), (5,9), (0,6), (6,9), (0,7), (7,9), (0,8), (8,9), (9,0)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
54
55
56
57
58
59
60
61
62
63
64
65
    ncol = F.randn((10, D))
    ecol = F.randn((17, D))
    if grad:
        ncol = F.attach_grad(ncol)
        ecol = F.attach_grad(ecol)

    g.ndata['h'] = ncol
    g.edata['w'] = ecol
    g.set_n_initializer(dgl.init.zero_initializer)
    g.set_e_initializer(dgl.init.zero_initializer)
    return g

66
67
68
69
70

@parametrize_dtype
def test_isolated_nodes(index_dtype):
    g = dgl.graph([(0, 1), (1, 2)], num_nodes=5, index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
71
72
73
    assert g.number_of_nodes() == 5

    # Test backward compatibility
74
    g = dgl.graph([(0, 1), (1, 2)], card=5, index_dtype=index_dtype)
75
76
    assert g.number_of_nodes() == 5

77
78
79
    g = dgl.bipartite([(0, 2), (0, 3), (1, 2)], 'user', 'plays',
                      'game', num_nodes=(5, 7), index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
80
81
82
83
    assert g.number_of_nodes('user') == 5
    assert g.number_of_nodes('game') == 7

    # Test backward compatibility
84
85
86
    g = dgl.bipartite([(0, 2), (0, 3), (1, 2)], 'user', 'plays',
                      'game', card=(5, 7), index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
87
88
89
    assert g.number_of_nodes('user') == 5
    assert g.number_of_nodes('game') == 7

90
91
@parametrize_dtype
def test_batch_setter_getter(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
92
93
    def _pfc(x):
        return list(F.zerocopy_to_numpy(x)[:,0])
94
    g = generate_graph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
95
96
97
98
99
100
101
102
103
    # set all nodes
    g.ndata['h'] = F.zeros((10, D))
    assert F.allclose(g.ndata['h'], F.zeros((10, D)))
    # pop nodes
    old_len = len(g.ndata)
    assert _pfc(g.ndata.pop('h')) == [0.] * 10
    assert len(g.ndata) == old_len - 1
    g.ndata['h'] = F.zeros((10, D))
    # set partial nodes
104
    u = F.tensor([1, 3, 5], F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
105
106
107
    g.nodes[u].data['h'] = F.ones((3, D))
    assert _pfc(g.ndata['h']) == [0., 1., 0., 1., 0., 1., 0., 0., 0., 0.]
    # get partial nodes
108
    u = F.tensor([1, 2, 3], F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    assert _pfc(g.nodes[u].data['h']) == [1., 0., 1.]

    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
    0, 2, 2
    2, 9, 3
    0, 3, 4
    3, 9, 5
    0, 4, 6
    4, 9, 7
    0, 5, 8
    5, 9, 9
    0, 6, 10
    6, 9, 11
    0, 7, 12
    7, 9, 13
    0, 8, 14
    8, 9, 15
    9, 0, 16
    '''
    # set all edges
    g.edata['l'] = F.zeros((17, D))
    assert _pfc(g.edata['l']) == [0.] * 17
    # pop edges
    old_len = len(g.edata)
    assert _pfc(g.edata.pop('l')) == [0.] * 17
    assert len(g.edata) == old_len - 1
    g.edata['l'] = F.zeros((17, D))
    # set partial edges (many-many)
140
141
    u = F.tensor([0, 0, 2, 5, 9], dtype=F.data_type_dict[index_dtype])
    v = F.tensor([1, 3, 9, 9, 0], dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
142
143
144
145
146
    g.edges[u, v].data['l'] = F.ones((5, D))
    truth = [0.] * 17
    truth[0] = truth[4] = truth[3] = truth[9] = truth[16] = 1.
    assert _pfc(g.edata['l']) == truth
    # set partial edges (many-one)
147
148
    u = F.tensor([3, 4, 6], dtype=F.data_type_dict[index_dtype])
    v = F.tensor([9], dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
149
150
151
152
    g.edges[u, v].data['l'] = F.ones((3, D))
    truth[5] = truth[7] = truth[11] = 1.
    assert _pfc(g.edata['l']) == truth
    # set partial edges (one-many)
153
154
    u = F.tensor([0], dtype=F.data_type_dict[index_dtype])
    v = F.tensor([4, 5, 6], dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
155
156
157
158
    g.edges[u, v].data['l'] = F.ones((3, D))
    truth[6] = truth[8] = truth[10] = 1.
    assert _pfc(g.edata['l']) == truth
    # get partial edges (many-many)
159
160
    u = F.tensor([0, 6, 0], dtype=F.data_type_dict[index_dtype])
    v = F.tensor([6, 9, 7], dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
161
162
    assert _pfc(g.edges[u, v].data['l']) == [1., 1., 0.]
    # get partial edges (many-one)
163
164
    u = F.tensor([5, 6, 7], dtype=F.data_type_dict[index_dtype])
    v = F.tensor([9], dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
165
166
    assert _pfc(g.edges[u, v].data['l']) == [1., 1., 0.]
    # get partial edges (one-many)
167
168
    u = F.tensor([0], dtype=F.data_type_dict[index_dtype])
    v = F.tensor([3, 4, 5], dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
169
170
    assert _pfc(g.edges[u, v].data['l']) == [1., 1., 1.]

171
172
173
174

@parametrize_dtype
def test_batch_setter_autograd(index_dtype):
    g = generate_graph(index_dtype=index_dtype, grad=True)
Minjie Wang's avatar
Minjie Wang committed
175
176
    h1 = g.ndata['h']
    # partial set
177
    v = F.tensor([1, 2, 8], F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
178
179
180
181
    hh = F.attach_grad(F.zeros((len(v), D)))
    with F.record_grad():
        g.nodes[v].data['h'] = hh
        h2 = g.ndata['h']
VoVAllen's avatar
VoVAllen committed
182
        F.backward(h2, F.ones((10, D)) * 2)
Minjie Wang's avatar
Minjie Wang committed
183
184
185
    assert F.array_equal(F.grad(h1)[:,0], F.tensor([2., 0., 0., 2., 2., 2., 2., 2., 0., 2.]))
    assert F.array_equal(F.grad(hh)[:,0], F.tensor([2., 2., 2.]))

186
187
188

@parametrize_dtype
def atest_nx_conversion(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    # check conversion between networkx and DGLGraph

    def _check_nx_feature(nxg, nf, ef):
        # check node and edge feature of nxg
        # this is used to check to_networkx
        num_nodes = len(nxg)
        num_edges = nxg.size()
        if num_nodes > 0:
            node_feat = ddict(list)
            for nid, attr in nxg.nodes(data=True):
                assert len(attr) == len(nf)
                for k in nxg.nodes[nid]:
                    node_feat[k].append(F.unsqueeze(attr[k], 0))
            for k in node_feat:
                feat = F.cat(node_feat[k], 0)
                assert F.allclose(feat, nf[k])
        else:
            assert len(nf) == 0
        if num_edges > 0:
            edge_feat = ddict(lambda: [0] * num_edges)
            for u, v, attr in nxg.edges(data=True):
                assert len(attr) == len(ef) + 1 # extra id
                eid = attr['id']
                for k in ef:
                    edge_feat[k][eid] = F.unsqueeze(attr[k], 0)
            for k in edge_feat:
                feat = F.cat(edge_feat[k], 0)
                assert F.allclose(feat, ef[k])
        else:
            assert len(ef) == 0

    n1 = F.randn((5, 3))
    n2 = F.randn((5, 10))
    n3 = F.randn((5, 4))
    e1 = F.randn((4, 5))
    e2 = F.randn((4, 7))
225
    g = dgl.graph([(0,2),(1,4),(3,0),(4,3)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
226
227
228
229
230
231
232
233
234
235
236
    g.ndata.update({'n1': n1, 'n2': n2, 'n3': n3})
    g.edata.update({'e1': e1, 'e2': e2})

    # convert to networkx
    nxg = dgl.to_networkx(g, node_attrs=['n1', 'n3'], edge_attrs=['e1', 'e2'])
    assert len(nxg) == 5
    assert nxg.size() == 4
    _check_nx_feature(nxg, {'n1': n1, 'n3': n3}, {'e1': e1, 'e2': e2})

    # convert to DGLGraph, nx graph has id in edge feature
    # use id feature to test non-tensor copy
237
238
    g = dgl.graph(nxg, node_attrs=['n1'], edge_attrs=['e1', 'id'], index_dtype=index_dtype)    
    assert g._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    # check graph size
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4
    # check number of features
    # test with existing dglgraph (so existing features should be cleared)
    assert len(g.ndata) == 1
    assert len(g.edata) == 2
    # check feature values
    assert F.allclose(g.ndata['n1'], n1)
    # with id in nx edge feature, e1 should follow original order
    assert F.allclose(g.edata['e1'], e1)
    assert F.array_equal(g.edata['id'], F.copy_to(F.arange(0, 4), F.cpu()))

    # test conversion after modifying DGLGraph
    # TODO(minjie): enable after mutation is supported
    #g.pop_e_repr('id') # pop id so we don't need to provide id when adding edges
    #new_n = F.randn((2, 3))
    #new_e = F.randn((3, 5))
    #g.add_nodes(2, data={'n1': new_n})
    ## add three edges, one is a multi-edge
    #g.add_edges([3, 6, 0], [4, 5, 2], data={'e1': new_e})
    #n1 = F.cat((n1, new_n), 0)
    #e1 = F.cat((e1, new_e), 0)
    ## convert to networkx again
    #nxg = g.to_networkx(node_attrs=['n1'], edge_attrs=['e1'])
    #assert len(nxg) == 7
    #assert nxg.size() == 7
    #_check_nx_feature(nxg, {'n1': n1}, {'e1': e1})

    # now test convert from networkx without id in edge feature
    # first pop id in edge feature
    for _, _, attr in nxg.edges(data=True):
        attr.pop('id')
    # test with a new graph
    g = dgl.graph(nxg , node_attrs=['n1'], edge_attrs=['e1'])
    # check graph size
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4
    # check number of features
    assert len(g.ndata) == 1
    assert len(g.edata) == 1
    # check feature values
    assert F.allclose(g.ndata['n1'], n1)
    # edge feature order follows nxg.edges()
    edge_feat = []
    for _, _, attr in nxg.edges(data=True):
        edge_feat.append(F.unsqueeze(attr['e1'], 0))
    edge_feat = F.cat(edge_feat, 0)
    assert F.allclose(g.edata['e1'], edge_feat)

    # Test converting from a networkx graph whose nodes are
    # not labeled with consecutive-integers.
    nxg = nx.cycle_graph(5)
    nxg.remove_nodes_from([0, 4])
    for u in nxg.nodes():
VoVAllen's avatar
VoVAllen committed
294
        nxg.nodes[u]['h'] = F.tensor([u])
Minjie Wang's avatar
Minjie Wang committed
295
296
297
298
299
300
301
302
303
304
305
306
307
    for u, v, d in nxg.edges(data=True):
        d['h'] = F.tensor([u, v])

    g = dgl.DGLGraph()
    g.from_networkx(nxg, node_attrs=['h'], edge_attrs=['h'])
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    assert g.has_edge_between(0, 1)
    assert g.has_edge_between(1, 2)
    assert F.allclose(g.ndata['h'], F.tensor([[1.], [2.], [3.]]))
    assert F.allclose(g.edata['h'], F.tensor([[1., 2.], [1., 2.],
                                              [2., 3.], [2., 3.]]))

308
309
310
@parametrize_dtype
def test_batch_send(index_dtype):
    g = generate_graph(index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
311
312
313
314
    def _fmsg(edges):
        assert tuple(F.shape(edges.src['h'])) == (5, D)
        return {'m' : edges.src['h']}
    # many-many send
315
316
    u = F.tensor([0, 0, 0, 0, 0],  dtype=F.data_type_dict[index_dtype])
    v = F.tensor([1, 2, 3, 4, 5],  dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
317
318
    g.send((u, v), _fmsg)
    # one-many send
319
320
    u = F.tensor([0],  dtype=F.data_type_dict[index_dtype])
    v = F.tensor([1, 2, 3, 4, 5],  dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
321
322
    g.send((u, v), _fmsg)
    # many-one send
323
324
    u = F.tensor([1, 2, 3, 4, 5],  dtype=F.data_type_dict[index_dtype])
    v = F.tensor([9],  dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
325
326
    g.send((u, v), _fmsg)

327
328
@parametrize_dtype
def test_batch_recv(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
329
    # basic recv test
330
331
332
    g = generate_graph(index_dtype=index_dtype)
    u = F.tensor([0, 0, 0, 4, 5, 6],  dtype=F.data_type_dict[index_dtype])
    v = F.tensor([1, 2, 3, 9, 9, 9],  dtype=F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
333
334
    reduce_msg_shapes.clear()
    g.send((u, v), message_func)
335
    g.recv(F.astype(F.unique(v), F.data_type_dict[index_dtype]), reduce_func, apply_node_func)
Minjie Wang's avatar
Minjie Wang committed
336
337
338
    assert(reduce_msg_shapes == {(1, 3, D), (3, 1, D)})
    reduce_msg_shapes.clear()

339
340
341

@parametrize_dtype
def test_apply_nodes(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
342
343
    def _upd(nodes):
        return {'h' : nodes.data['h'] * 2}
344
    g = generate_graph(index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
345
346
347
    old = g.ndata['h']
    g.apply_nodes(_upd)
    assert F.allclose(old * 2, g.ndata['h'])
348
    u = F.tensor([0, 3, 4, 6], F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
349
350
351
    g.apply_nodes(lambda nodes : {'h' : nodes.data['h'] * 0.}, u)
    assert F.allclose(F.gather_row(g.ndata['h'], u), F.zeros((4, D)))

352
353
@parametrize_dtype
def test_apply_edges(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
354
355
    def _upd(edges):
        return {'w' : edges.data['w'] * 2}
356
    g = generate_graph(index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
357
358
359
    old = g.edata['w']
    g.apply_edges(_upd)
    assert F.allclose(old * 2, g.edata['w'])
360
361
    u = F.tensor([0, 0, 0, 4, 5, 6], F.data_type_dict[index_dtype])
    v = F.tensor([1, 2, 3, 9, 9, 9], F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
362
    g.apply_edges(lambda edges : {'w' : edges.data['w'] * 0.}, (u, v))
363
    eid = F.tensor(g.edge_ids(u, v), F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
364
365
    assert F.allclose(F.gather_row(g.edata['w'], eid), F.zeros((6, D)))

366
367
368
@parametrize_dtype
def test_update_routines(index_dtype):
    g = generate_graph(index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    # send_and_recv
    reduce_msg_shapes.clear()
    u = [0, 0, 0, 4, 5, 6]
    v = [1, 2, 3, 9, 9, 9]
    g.send_and_recv((u, v), message_func, reduce_func, apply_node_func)
    assert(reduce_msg_shapes == {(1, 3, D), (3, 1, D)})
    reduce_msg_shapes.clear()
    try:
        g.send_and_recv([u, v], message_func, reduce_func, apply_node_func)
        assert False
    except dgl.DGLError:
        pass

    # pull
384
    v = F.tensor([1, 2, 3, 9], F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
385
386
387
388
389
390
    reduce_msg_shapes.clear()
    g.pull(v, message_func, reduce_func, apply_node_func)
    assert(reduce_msg_shapes == {(1, 8, D), (3, 1, D)})
    reduce_msg_shapes.clear()

    # push
391
    v = F.tensor([0, 1, 2, 3], F.data_type_dict[index_dtype])
Minjie Wang's avatar
Minjie Wang committed
392
393
394
395
396
397
398
399
400
401
402
    reduce_msg_shapes.clear()
    g.push(v, message_func, reduce_func, apply_node_func)
    assert(reduce_msg_shapes == {(1, 3, D), (8, 1, D)})
    reduce_msg_shapes.clear()

    # update_all
    reduce_msg_shapes.clear()
    g.update_all(message_func, reduce_func, apply_node_func)
    assert(reduce_msg_shapes == {(1, 8, D), (9, 1, D)})
    reduce_msg_shapes.clear()

403
404
@parametrize_dtype
def test_recv_0deg(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
405
    # test recv with 0deg nodes;
406
    g = dgl.graph([(0,1)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
        return {'h' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
    def _init2(shape, dtype, ctx, ids):
        return 2 + F.zeros(shape, dtype, ctx)
    g.set_n_initializer(_init2, 'h')
    # test#1: recv both 0deg and non-0deg nodes
    old = F.randn((2, 5))
    g.ndata['h'] = old
    g.send((0, 1), _message)
    g.recv([0, 1], _reduce, _apply)
    new = g.ndata.pop('h')
    # 0deg check: initialized with the func and got applied
    assert F.allclose(new[0], F.full_1d(5, 4, F.float32))
    # non-0deg check
    assert F.allclose(new[1], F.sum(old, 0) * 2)

    # test#2: recv only 0deg node is equal to apply
    old = F.randn((2, 5))
    g.ndata['h'] = old
    g.send((0, 1), _message)
    g.recv(0, _reduce, _apply)
    new = g.ndata.pop('h')
    # 0deg check: equal to apply_nodes
    assert F.allclose(new[0], 2 * old[0])
    # non-0deg check: untouched
    assert F.allclose(new[1], old[1])

438
439
440

@parametrize_dtype
def test_recv_0deg_newfld(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
441
    # test recv with 0deg nodes; the reducer also creates a new field
442
    g = dgl.graph([(0,1)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
        return {'h1' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
    def _apply(nodes):
        return {'h1' : nodes.data['h1'] * 2}
    def _init2(shape, dtype, ctx, ids):
        return 2 + F.zeros(shape, dtype=dtype, ctx=ctx)
    # test#1: recv both 0deg and non-0deg nodes
    old = F.randn((2, 5))
    g.set_n_initializer(_init2, 'h1')
    g.ndata['h'] = old
    g.send((0, 1), _message)
    g.recv([0, 1], _reduce, _apply)
    new = g.ndata.pop('h1')
    # 0deg check: initialized with the func and got applied
    assert F.allclose(new[0], F.full_1d(5, 4, dtype=F.float32))
    # non-0deg check
    assert F.allclose(new[1], F.sum(old, 0) * 2)

    # test#2: recv only 0deg node
    old = F.randn((2, 5))
    g.ndata['h'] = old
    g.ndata['h1'] = F.full((2, 5), -1, F.int64)  # this is necessary
    g.send((0, 1), _message)
    g.recv(0, _reduce, _apply)
    new = g.ndata.pop('h1')
    # 0deg check: fallback to apply
    assert F.allclose(new[0], F.full_1d(5, -2, F.int64))
    # non-0deg check: not changed
    assert F.allclose(new[1], F.full_1d(5, -1, F.int64))

475
476
@parametrize_dtype
def test_update_all_0deg(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
477
    # test#1
478
    g = dgl.graph([(1,0), (2,0), (3,0), (4,0)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
        return {'h' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
    def _init2(shape, dtype, ctx, ids):
        return 2 + F.zeros(shape, dtype, ctx)
    g.set_n_initializer(_init2, 'h')
    old_repr = F.randn((5, 5))
    g.ndata['h'] = old_repr
    g.update_all(_message, _reduce, _apply)
    new_repr = g.ndata['h']
    # the first row of the new_repr should be the sum of all the node
    # features; while the 0-deg nodes should be initialized by the
    # initializer and applied with UDF.
    assert F.allclose(new_repr[1:], 2*(2+F.zeros((4,5))))
    assert F.allclose(new_repr[0], 2 * F.sum(old_repr, 0))

498
    # test#2:
499
    g = dgl.graph([], num_nodes=5, index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
500
501
502
503
504
505
506
    g.set_n_initializer(_init2, 'h')
    g.ndata['h'] = old_repr
    g.update_all(_message, _reduce, _apply)
    new_repr = g.ndata['h']
    # should fallback to apply
    assert F.allclose(new_repr, 2*old_repr)

507
508
509
@parametrize_dtype
def test_pull_0deg(index_dtype):
    g = dgl.graph([(0,1)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
        return {'h' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
    def _init2(shape, dtype, ctx, ids):
        return 2 + F.zeros(shape, dtype, ctx)
    g.set_n_initializer(_init2, 'h')
    # test#1: pull both 0deg and non-0deg nodes
    old = F.randn((2, 5))
    g.ndata['h'] = old
    g.pull([0, 1], _message, _reduce, _apply)
    new = g.ndata.pop('h')
    # 0deg check: initialized with the func and got applied
    assert F.allclose(new[0], F.full_1d(5, 4, dtype=F.float32))
    # non-0deg check
    assert F.allclose(new[1], F.sum(old, 0) * 2)

    # test#2: pull only 0deg node
    old = F.randn((2, 5))
    g.ndata['h'] = old
    g.pull(0, _message, _reduce, _apply)
    new = g.ndata.pop('h')
    # 0deg check: fallback to apply
    assert F.allclose(new[0], 2*old[0])
    # non-0deg check: not touched
    assert F.allclose(new[1], old[1])

539
540
541
@parametrize_dtype
def test_send_multigraph(index_dtype):
    g = dgl.graph([(0,1), (0,1), (0,1), (2,1)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

    def _message_a(edges):
        return {'a': edges.data['a']}
    def _message_b(edges):
        return {'a': edges.data['a'] * 3}
    def _reduce(nodes):
        return {'a': F.max(nodes.mailbox['a'], 1)}

    def answer(*args):
        return F.max(F.stack(args, 0), 0)

    assert g.is_multigraph

    # send by eid
    old_repr = F.randn((4, 5))
    g.ndata['a'] = F.zeros((3, 5))
    g.edata['a'] = old_repr
    g.send([0, 2], message_func=_message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert F.allclose(new_repr[1], answer(old_repr[0], old_repr[2]))

    g.ndata['a'] = F.zeros((3, 5))
    g.edata['a'] = old_repr
    g.send([0, 2, 3], message_func=_message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert F.allclose(new_repr[1], answer(old_repr[0], old_repr[2], old_repr[3]))

    # send on multigraph
    g.ndata['a'] = F.zeros((3, 5))
    g.edata['a'] = old_repr
    g.send(([0, 2], [1, 1]), _message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert F.allclose(new_repr[1], F.max(old_repr, 0))

    # consecutive send and send_on
    g.ndata['a'] = F.zeros((3, 5))
    g.edata['a'] = old_repr
    g.send((2, 1), _message_a)
    g.send([0, 1], message_func=_message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert F.allclose(new_repr[1], answer(old_repr[0] * 3, old_repr[1] * 3, old_repr[3]))

    # consecutive send_on
    g.ndata['a'] = F.zeros((3, 5))
    g.edata['a'] = old_repr
    g.send(0, message_func=_message_a)
    g.send(1, message_func=_message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert F.allclose(new_repr[1], answer(old_repr[0], old_repr[1] * 3))

    # send_and_recv_on
    g.ndata['a'] = F.zeros((3, 5))
    g.edata['a'] = old_repr
    g.send_and_recv([0, 2, 3], message_func=_message_a, reduce_func=_reduce)
    new_repr = g.ndata['a']
    assert F.allclose(new_repr[1], answer(old_repr[0], old_repr[2], old_repr[3]))
    assert F.allclose(new_repr[[0, 2]], F.zeros((2, 5)))

# Disabled - Heterograph doesn't support mutation
def _test_dynamic_addition():
    N = 3
    D = 1

    g = dgl.DGLGraph()

    # Test node addition
    g.add_nodes(N)
    g.ndata.update({'h1': F.randn((N, D)),
                    'h2': F.randn((N, D))})
    g.add_nodes(3)
    assert g.ndata['h1'].shape[0] == g.ndata['h2'].shape[0] == N + 3

    # Test edge addition
    g.add_edge(0, 1)
    g.add_edge(1, 0)
    g.edata.update({'h1': F.randn((2, D)),
                    'h2': F.randn((2, D))})
    assert g.edata['h1'].shape[0] == g.edata['h2'].shape[0] == 2

    g.add_edges([0, 2], [2, 0])
    g.edata['h1'] = F.randn((4, D))
    assert g.edata['h1'].shape[0] == g.edata['h2'].shape[0] == 4

    g.add_edge(1, 2)
    g.edges[4].data['h1'] = F.randn((1, D))
    assert g.edata['h1'].shape[0] == g.edata['h2'].shape[0] == 5

    # test add edge with part of the features
    g.add_edge(2, 1, {'h1': F.randn((1, D))})
    assert len(g.edata['h1']) == len(g.edata['h2'])

638
639
640
@parametrize_dtype
def test_repr(index_dtype):
    G = dgl.graph([(0,1), (0,2), (1,2)], num_nodes=10, index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
641
642
643
644
645
646
647
    repr_string = G.__repr__()
    print(repr_string)
    G.ndata['x'] = F.zeros((10, 5))
    G.edata['y'] = F.zeros((3, 4))
    repr_string = G.__repr__()
    print(repr_string)

VoVAllen's avatar
VoVAllen committed
648

649
650
@parametrize_dtype
def test_group_apply_edges(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
651
652
653
654
655
656
657
658
659
660
661
662
    def edge_udf(edges):
        h = F.sum(edges.data['feat'] * (edges.src['h'] + edges.dst['h']), dim=2)
        normalized_feat = F.softmax(h, dim=1)
        return {"norm_feat": normalized_feat}

    elist = []
    for v in [1, 2, 3, 4, 5, 6, 7, 8]:
        elist.append((0, v))
    for v in [2, 3, 4, 6, 7, 8]:
        elist.append((1, v))
    for v in [2, 3, 4, 5, 6, 7, 8]:
        elist.append((2, v))
663
    g = dgl.graph(elist, index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

    g.ndata['h'] = F.randn((g.number_of_nodes(), D))
    g.edata['feat'] = F.randn((g.number_of_edges(), D))

    def _test(group_by):
        g.group_apply_edges(group_by=group_by, func=edge_udf)
        if group_by == 'src':
            u, v, eid = g.out_edges(1, form='all')
        else:
            u, v, eid = g.in_edges(5, form='all')
        out_feat = g.edges[eid].data['norm_feat']
        result = (g.nodes[u].data['h'] + g.nodes[v].data['h']) * g.edges[eid].data['feat']
        result = F.softmax(F.sum(result, dim=1), dim=0)
        assert F.allclose(out_feat, result)

    # test group by source nodes
    _test('src')

    # test group by destination nodes
    _test('dst')

685
686
687
@parametrize_dtype
def test_local_var(index_dtype):
    g = dgl.graph([(0,1), (1,2), (2,3), (3,4)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
    g.ndata['h'] = F.zeros((g.number_of_nodes(), 3))
    g.edata['w'] = F.zeros((g.number_of_edges(), 4))
    # test override
    def foo(g):
        g = g.local_var()
        g.ndata['h'] = F.ones((g.number_of_nodes(), 3))
        g.edata['w'] = F.ones((g.number_of_edges(), 4))
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test out-place update
    def foo(g):
        g = g.local_var()
        g.nodes[[2, 3]].data['h'] = F.ones((2, 3))
        g.edges[[2, 3]].data['w'] = F.ones((2, 4))
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test out-place update 2
    def foo(g):
        g = g.local_var()
        g.apply_nodes(lambda nodes: {'h' : nodes.data['h'] + 10}, [2, 3])
        g.apply_edges(lambda edges: {'w' : edges.data['w'] + 10}, [2, 3])
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test auto-pop
    def foo(g):
        g = g.local_var()
        g.ndata['hh'] = F.ones((g.number_of_nodes(), 3))
        g.edata['ww'] = F.ones((g.number_of_edges(), 4))
    foo(g)
    assert 'hh' not in g.ndata
    assert 'ww' not in g.edata

    # test initializer1
    g = dgl.graph([(0,1), (1,1)])
    g.set_n_initializer(dgl.init.zero_initializer)
    def foo(g):
        g = g.local_var()
        g.nodes[0].data['h'] = F.ones((1, 1))
        assert F.allclose(g.ndata['h'], F.tensor([[1.], [0.]]))
    foo(g)
    # test initializer2
    def foo_e_initializer(shape, dtype, ctx, id_range):
        return F.ones(shape)
    g.set_e_initializer(foo_e_initializer, field='h')
    def foo(g):
        g = g.local_var()
        g.edges[0, 1].data['h'] = F.ones((1, 1))
        assert F.allclose(g.edata['h'], F.ones((2, 1)))
        g.edges[0, 1].data['w'] = F.ones((1, 1))
        assert F.allclose(g.edata['w'], F.tensor([[1.], [0.]]))
    foo(g)

743
744
745
@parametrize_dtype
def test_local_scope(index_dtype):
    g = dgl.graph([(0,1), (1,2), (2,3), (3,4)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
    g.ndata['h'] = F.zeros((g.number_of_nodes(), 3))
    g.edata['w'] = F.zeros((g.number_of_edges(), 4))
    # test override
    def foo(g):
        with g.local_scope():
            g.ndata['h'] = F.ones((g.number_of_nodes(), 3))
            g.edata['w'] = F.ones((g.number_of_edges(), 4))
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test out-place update
    def foo(g):
        with g.local_scope():
            g.nodes[[2, 3]].data['h'] = F.ones((2, 3))
            g.edges[[2, 3]].data['w'] = F.ones((2, 4))
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test out-place update 2
    def foo(g):
        with g.local_scope():
            g.apply_nodes(lambda nodes: {'h' : nodes.data['h'] + 10}, [2, 3])
            g.apply_edges(lambda edges: {'w' : edges.data['w'] + 10}, [2, 3])
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test auto-pop
    def foo(g):
        with g.local_scope():
            g.ndata['hh'] = F.ones((g.number_of_nodes(), 3))
            g.edata['ww'] = F.ones((g.number_of_edges(), 4))
    foo(g)
    assert 'hh' not in g.ndata
    assert 'ww' not in g.edata

    # test nested scope
    def foo(g):
        with g.local_scope():
            g.ndata['hh'] = F.ones((g.number_of_nodes(), 3))
            g.edata['ww'] = F.ones((g.number_of_edges(), 4))
            with g.local_scope():
                g.ndata['hhh'] = F.ones((g.number_of_nodes(), 3))
                g.edata['www'] = F.ones((g.number_of_edges(), 4))
            assert 'hhh' not in g.ndata
            assert 'www' not in g.edata
    foo(g)
    assert 'hh' not in g.ndata
    assert 'ww' not in g.edata

    # test initializer1
796
    g = dgl.graph([(0,1), (1,1)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
    g.set_n_initializer(dgl.init.zero_initializer)
    def foo(g):
        with g.local_scope():
            g.nodes[0].data['h'] = F.ones((1, 1))
            assert F.allclose(g.ndata['h'], F.tensor([[1.], [0.]]))
    foo(g)
    # test initializer2
    def foo_e_initializer(shape, dtype, ctx, id_range):
        return F.ones(shape)
    g.set_e_initializer(foo_e_initializer, field='h')
    def foo(g):
        with g.local_scope():
            g.edges[0, 1].data['h'] = F.ones((1, 1))
            assert F.allclose(g.edata['h'], F.ones((2, 1)))
            g.edges[0, 1].data['w'] = F.ones((1, 1))
            assert F.allclose(g.edata['w'], F.tensor([[1.], [0.]]))
    foo(g)

815
816
@parametrize_dtype
def test_issue_1088(index_dtype):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
817
818
819
    # This test ensures that message passing on a heterograph with one edge type
    # would not crash (GitHub issue #1088).
    import dgl.function as fn
820
    g = dgl.heterograph({('U', 'E', 'V'): ([0, 1, 2], [1, 2, 3])}, index_dtype=index_dtype)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
821
822
823
    g.nodes['U'].data['x'] = F.randn((3, 3))
    g.update_all(fn.copy_u('x', 'm'), fn.sum('m', 'y'))

Minjie Wang's avatar
Minjie Wang committed
824
if __name__ == '__main__':
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
    # test_isolated_nodes("int32")
    # test_nx_conversion()
    # test_batch_setter_getter("int32")
    # test_batch_recv("int64")
    test_apply_edges("int32")
    # test_batch_setter_autograd()
    # test_batch_send()
    # test_batch_recv()
    # test_apply_nodes()
    # test_apply_edges()
    # test_update_routines()
    # test_recv_0deg()
    # test_recv_0deg_newfld()
    # test_update_all_0deg()
    # test_pull_0deg()
    # test_send_multigraph()
    # test_dynamic_addition()
    # test_repr()
    # test_group_apply_edges()
    # test_local_var()
    # test_local_scope()
846
    test_issue_1088('int64')