test_to_block.py 6.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
##
#   Copyright 2019-2021 Contributors
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

import backend as F

import dgl
import dgl.partition
from test_utils import parametrize_idtype


@parametrize_idtype
def test_to_block(idtype):
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes("DST/" + ntype)
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID],
            )

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]

        bg_src, bg_dst = bg.all_edges(order="eid")
        src_ans, dst_ans = g.all_edges(order="eid")

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
            if dst_nodes is not None and ntype in dst_nodes:
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
            else:
                check(g, bg, ntype, etype, None, include_dst_in_src)

    # homogeneous graph
    g = dgl.graph(
        (F.tensor([1, 2], dtype=idtype), F.tensor([2, 3], dtype=idtype))
    )
    dst_nodes = F.tensor([3, 2], dtype=idtype)
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    check(g, bg, "_N", "_E", dst_nodes)

    src_nodes = bg.srcnodes["_N"].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    check(g, bg, "_N", "_E", dst_nodes)

    # heterogeneous graph
    g = dgl.heterograph(
        {
            ("A", "AA", "A"): ([0, 2, 1, 3], [1, 3, 2, 4]),
            ("A", "AB", "B"): ([0, 1, 3, 1], [1, 3, 5, 6]),
            ("B", "BA", "A"): ([2, 3], [3, 2]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["A"].data["x"] = F.randn((5, 10))
    g.nodes["B"].data["x"] = F.randn((7, 5))
    g.edges["AA"].data["x"] = F.randn((4, 3))
    g.edges["AB"].data["x"] = F.randn((4, 3))
    g.edges["BA"].data["x"] = F.randn((2, 3))
    g_a = g["AA"]

    def check_features(g, bg):
        for ntype in bg.srctypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.srcnodes[ntype].data[key],
                    F.gather_row(
                        g.nodes[ntype].data[key],
                        bg.srcnodes[ntype].data[dgl.NID],
                    ),
                )
        for ntype in bg.dsttypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.dstnodes[ntype].data[key],
                    F.gather_row(
                        g.nodes[ntype].data[key],
                        bg.dstnodes[ntype].data[dgl.NID],
                    ),
                )
        for etype in bg.canonical_etypes:
            for key in g.edges[etype].data:
                assert F.array_equal(
                    bg.edges[etype].data[key],
                    F.gather_row(
                        g.edges[etype].data[key], bg.edges[etype].data[dgl.EID]
                    ),
                )

    bg = dgl.to_block(g_a)
    check(g_a, bg, "A", "AA", None)
    check_features(g_a, bg)
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, "A", "AA", None, False)
    check_features(g_a, bg)
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4

    dst_nodes = F.tensor([4, 3, 2, 1], dtype=idtype)
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, "A", "AA", dst_nodes)
    check_features(g_a, bg)

    g_ab = g["AB"]

    bg = dgl.to_block(g_ab)
    assert bg.idtype == idtype
    assert bg.number_of_nodes("SRC/B") == 4
    assert F.array_equal(
        bg.srcnodes["B"].data[dgl.NID], bg.dstnodes["B"].data[dgl.NID]
    )
    assert bg.number_of_nodes("DST/A") == 0
    checkall(g_ab, bg, None)
    check_features(g_ab, bg)

    dst_nodes = {"B": F.tensor([5, 6, 3, 1], dtype=idtype)}
    bg = dgl.to_block(g, dst_nodes)
    assert bg.number_of_nodes("SRC/B") == 4
    assert F.array_equal(
        bg.srcnodes["B"].data[dgl.NID], bg.dstnodes["B"].data[dgl.NID]
    )
    assert bg.number_of_nodes("DST/A") == 0
    checkall(g, bg, dst_nodes)
    check_features(g, bg)

    dst_nodes = {
        "A": F.tensor([4, 3, 2, 1], dtype=idtype),
        "B": F.tensor([3, 5, 6, 1], dtype=idtype),
    }
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
    check_features(g, bg)

    # test specifying lhs_nodes with include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    checkall(g, bg, dst_nodes)
    check_features(g, bg)

    # test without include_dst_in_src
    dst_nodes = {
        "A": F.tensor([4, 3, 2, 1], dtype=idtype),
        "B": F.tensor([3, 5, 6, 1], dtype=idtype),
    }
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)

    # test specifying lhs_nodes without include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(
        g, dst_nodes=dst_nodes, include_dst_in_src=False, src_nodes=src_nodes
    )
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)