gather_mm.cu 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#include "hip/hip_runtime.h"
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/gather_mm.cu
 * \brief GatherMM C APIs and definitions.
 */
#include <dgl/array.h>
#include <algorithm>  // std::swap
#include "./utils.h"
#include "./functor.cuh"
#include "./atomic.cuh"

namespace dgl {
using namespace cuda;
namespace aten {

namespace {

/*! \brief Call cuBLAS GEMM API for dense matmul operation for float and double. */
template <typename DType>
hipblasStatus_t cublasGemm(hipblasHandle_t handle, hipblasOperation_t transa,
    hipblasOperation_t transb, int m, int n, int k,
    const DType* alpha, const DType* A, int lda,
    const DType* B, int ldb, const DType* beta,
    DType* C, int ldc) {
  LOG(INFO) << "Not supported dtype";
  return HIPBLAS_STATUS_EXECUTION_FAILED;
}

#ifdef USE_FP16
template <>
hipblasStatus_t cublasGemm<__half>(hipblasHandle_t handle, hipblasOperation_t transa,
    hipblasOperation_t transb, int m, int n, int k,
    const __half* alpha, const __half* A, int lda,
    const __half* B, int ldb, const __half* beta,
    __half* C, int ldc) {
  return hipblasHgemm(handle, transa, transb, m, n, k, alpha, A, lda,
      B, ldb, beta, C, ldc);
}
#endif

template <>
hipblasStatus_t cublasGemm<float>(hipblasHandle_t handle, hipblasOperation_t transa,
    hipblasOperation_t transb, int m, int n, int k,
    const float* alpha, const float* A, int lda,
    const float* B, int ldb, const float* beta,
    float* C, int ldc) {
  return hipblasSgemm(handle, transa, transb, m, n, k, alpha, A, lda,
      B, ldb, beta, C, ldc);
}

template <>
hipblasStatus_t cublasGemm<double>(hipblasHandle_t handle, hipblasOperation_t transa,
    hipblasOperation_t transb, int m, int n, int k,
    const double* alpha, const double* A, int lda,
    const double* B, int ldb, const double* beta,
    double* C, int ldc) {
  return hipblasDgemm(handle, transa, transb, m, n, k, alpha, A, lda,
      B, ldb, beta, C, ldc);
}

}  // namespace

namespace cuda {

/* \Note Each row of A multiplies a segment of matrix of B of dimension in_len * outlen.
  One warp is assigned to process one row of A. Each WARP sequentially multiplies
  one element of A and a row of B to compute partial result of the output. A
  is loaded in shared memory in a coalesced way. Output matrix is loaded in
  registers. B should get benefit from L2 cache.
*/
template <typename Idx, typename DType>
__global__ void GatherMMScatterKernel(
    const DType* __restrict__ A,
    const DType* __restrict__ B,
    DType* __restrict__ C,
    const Idx* __restrict__ idx_a,
    const Idx* __restrict__ idx_b,
    const Idx* __restrict__ idx_c,
    const int64_t num_rows,
    const int64_t in_len,
    const int64_t out_len) {

    unsigned int tId = threadIdx.x;
    unsigned int laneId = tId & 31;
    unsigned int gId = (blockIdx.x * blockDim.x + threadIdx.x);
    unsigned int warpId = gId >> 5;
    unsigned int row = warpId;
    if (row < num_rows) {
        const unsigned int local_row = row & 3;  // hardcoded for TB size 128 (4 warps)
        const Idx cur_rowA = (idx_a) ? idx_a[row] : row;
        const Idx cur_rowB = (idx_b) ? idx_b[row] : row;
        const Idx cur_rowC = (idx_c) ? idx_c[row] : row;
        const Idx B_offset = cur_rowB * in_len * out_len;
        const int sh_a_tile = 64;
        __shared__ DType sh_A[4 * sh_a_tile];
        int a_tile = sh_a_tile;
        for (unsigned int k_start = 0; k_start < in_len; k_start += 64) {
            if ((in_len - k_start) < a_tile) a_tile = in_len - k_start;
            // Load A in shared mem in a coalesced way
            for (unsigned int l = laneId; l < a_tile; l += 32)
                sh_A[local_row * sh_a_tile + l] = A[cur_rowA * in_len + (k_start + l)];
            __syncwarp();

            for (unsigned int outloop = 0; outloop < out_len; outloop +=32) {
                DType out_reg = 0;  // thread private
                const unsigned int l = laneId;
                if (l < out_len) {
                    // iterate over elements of a row of A
                    for (unsigned int i = 0; i < a_tile; i++) {
                        const DType a_val =  sh_A[local_row * sh_a_tile + i];
                        // iterate over elements of a row of B in parallel
                        out_reg += a_val * B[B_offset + ((i + k_start) * out_len + (outloop + l))];
                    }
                    if (idx_c) {
                      AtomicAdd(C + cur_rowC * out_len + (outloop + l), out_reg);
                    } else {
                      C[cur_rowC * out_len + (outloop + l)] += out_reg;
                    }
                }
            }
        }
    }
}


/* \Note Output matrix is accumulated via atomic operations. Rest of the strategies
  are similar to GatherMMKernel. One warp is assigned to process one row of A. Each
  WARP sequentially multiplies one element of A and a row of B to compute partial
  result of the output. A is loaded in shared memory in a coalesced way. B should
  get benefit from L2 cache.
*/
template <typename Idx, typename DType>
__global__ void GatherMMScatterKernel2(
    const DType* __restrict__ A,
    const DType* __restrict__ B,
    DType* __restrict__ C,
    const Idx* __restrict__ idx_a,
    const Idx* __restrict__ idx_b,
    const Idx* __restrict__ idx_c,
    const int64_t num_rows,
    const int64_t in_len,
    const int64_t out_len) {

    unsigned int tId = threadIdx.x;
    unsigned int laneId = tId & 31;
    unsigned int gId = (blockIdx.x * blockDim.x + threadIdx.x);
    unsigned int warpId = gId >> 5;
    unsigned int row = warpId;
    if (row < num_rows) {
        const unsigned int local_row = row & 3;  // hardcoded for TB size 128 (4 warps)
        const Idx row_a = (idx_a) ? idx_a[row] : row;
        const Idx row_b = (idx_b) ? idx_b[row] : row;
        const Idx row_c = (idx_c) ? idx_c[row] : row;
        const Idx C_offset = row_c * in_len * out_len;
        const int sh_a_tile = 64;
        __shared__ DType sh_A[4 * sh_a_tile];
        int a_tile = sh_a_tile;
        for (unsigned int k_start = 0; k_start < in_len; k_start += 64) {
            if ((in_len - k_start) < a_tile) a_tile = in_len - k_start;
            /* Load A in shared mem in a coalesced way */
            for (unsigned int l = laneId; l < a_tile; l += 32)
                sh_A[local_row * sh_a_tile + l] = A[row_a * in_len + (k_start + l)];
            __syncwarp();

            for (unsigned int outloop = 0; outloop < out_len; outloop +=32) {
                DType out_reg = 0;  // thread private
                const unsigned int l = laneId;
                if (l < out_len) {
                    const DType b_val = B[row_b * out_len + (outloop + l)];
                    /* iterate over elements of a row of A */
                    for (unsigned int i = 0; i < a_tile; i++) {
                        const DType a_val = sh_A[local_row * sh_a_tile + i];
                        const Idx C_idx = C_offset + ((i + k_start) * out_len + (outloop + l));
                        AtomicAdd(C + C_idx, a_val * b_val);
                    }
                }
            }
        }
    }
}

}  // namespace cuda

/*!
 * \brief Implementation of Gather_mm operator. The input matrix A is
 *        expected to be sorted according to relation type.
 * \param A The input dense matrix of dimension m x k
 * \param B The input dense matrix of dimension k x n
 * \param C The output dense matrix of dimension m x n
 * \param seglen_A The input vector of size R. Each element
 *        is the length of segments of input ``A``
 * \param a_trans Matrix A to be transposed
 * \param b_trans Matrix B to be transposed
 */
template <int XPU, typename IdType, int bits>
void SegmentMM(const NDArray A,
               const NDArray B,
               NDArray C,
               const NDArray seglen_A,
               bool a_trans, bool b_trans) {
    SWITCH_BITS(bits, DType, {
        auto device = runtime::DeviceAPI::Get(A->ctx);
        hipStream_t stream = runtime::getCurrentCUDAStream();
        const DType *A_data = A.Ptr<DType>();
        const DType *B_data = B.Ptr<DType>();
        const IdType* seglen_A_data = seglen_A.Ptr<IdType>();
        DType *C_data = C.Ptr<DType>();
        int64_t A_offset = 0, B_offset = 0, C_offset = 0;
        int64_t m, n, k;
        int64_t num_rel = seglen_A.NumElements();
        DType alpha = 1., beta = 0.;

        auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
        if (!thr_entry->cublas_handle)
            CUBLAS_CALL(hipblasCreate(&(thr_entry->cublas_handle)));
        CUBLAS_CALL(hipblasSetStream(thr_entry->cublas_handle, stream));

        IdType m_offset = 0;
        for (IdType etype = 0; etype < num_rel; ++etype) {
            m = seglen_A_data[etype];  // rows of A
            CHECK_LE(m_offset + m, A->shape[0]) << "Segment index out of bound of A->shape[0].";
            n = B->shape[2];  // cols of B
            k = B->shape[1];  // cols of A == rows of B
            int ldb = n, lda = k, ldc = n;
            hipblasOperation_t transB = HIPBLAS_OP_N;
            hipblasOperation_t transA = HIPBLAS_OP_N;
            if (b_trans) {
                transB = HIPBLAS_OP_T;
                ldb = n, lda = n, ldc = k;
                std::swap(n, k);
            }
            CUBLAS_CALL(cublasGemm<DType>(
                thr_entry->cublas_handle,
                transB,
                transA,
                n, m, k,
                &alpha,
                B_data + B_offset, ldb,
                A_data + A_offset, lda,
                &beta,
                C_data + C_offset, ldc));
            A_offset += m * k;
            B_offset += k * n;
            C_offset += m * n;
            m_offset += m;
        }
    });
}

template <int XPU, typename IdType, int bits>
void SegmentMMBackwardB(const NDArray A,
                        const NDArray dC,
                        NDArray dB,
                        const NDArray seglen) {
    SWITCH_BITS(bits, DType, {
        auto device = runtime::DeviceAPI::Get(A->ctx);
        hipStream_t stream = runtime::getCurrentCUDAStream();
        const DType *A_data = A.Ptr<DType>();
        const DType *dC_data = dC.Ptr<DType>();
        const IdType* seglen_data = seglen.Ptr<IdType>();
        DType *dB_data = dB.Ptr<DType>();
        int64_t A_offset = 0, dC_offset = 0, dB_offset = 0;
        int64_t m, n, k;
        int64_t num_rel = seglen.NumElements();
        DType alpha = 1., beta = 1.;

        auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
        if (!thr_entry->cublas_handle)
            CUBLAS_CALL(hipblasCreate(&(thr_entry->cublas_handle)));
        CUBLAS_CALL(hipblasSetStream(thr_entry->cublas_handle, stream));

        IdType k_offset = 0;
        for (IdType etype = 0; etype < num_rel; ++etype) {
            m = dC->shape[1];
            n = A->shape[1];
            k = seglen_data[etype];
            CHECK_LE(k_offset + k, A->shape[0]) << "Segement index out of bound of A->shape[0].";
            int lddC = m, ldA = n, lddB = m;
            hipblasOperation_t trans_dC = HIPBLAS_OP_N;
            hipblasOperation_t trans_A = HIPBLAS_OP_T;
            CUBLAS_CALL(cublasGemm<DType>(
                thr_entry->cublas_handle,
                trans_dC,
                trans_A,
                m, n, k,
                &alpha,
                dC_data + dC_offset, lddC,
                A_data + A_offset, ldA,
                &beta,
                dB_data + dB_offset, lddB));
            dC_offset += m * k;
            A_offset += n * k;
            dB_offset += m * n;
            k_offset += k;
        }
    });
}

/*!
 * \brief Implementation of Gather_mm operator. The input matrix A is
 *        expected to be sorted according to relation type.
 * \param A The input dense matrix of dimension m x k
 * \param B The input dense matrix of dimension k x n
 * \param C The output dense matrix of dimension m x n
 * \param idx_a The input vector to gather left hand operand on
 * \param idx_b The input vector to gather right hand operand on
 */

template <int XPU, typename IdType, int bits>
void GatherMM(const NDArray A,
              const NDArray B,
              NDArray C,
              const NDArray idx_a,
              const NDArray idx_b) {
  SWITCH_BITS(bits, DType, {
        auto device = runtime::DeviceAPI::Get(A->ctx);
        hipStream_t stream = runtime::getCurrentCUDAStream();
        int64_t out_len = B->shape[2];  // cols of B
        int64_t in_len = A->shape[1];  // cols of A
        const int64_t tot_num_rows = A->shape[0];
        const int ntx = 128;
        const int warp_size = 32;
        const int nbx = ((tot_num_rows * warp_size + ntx - 1) / ntx);
        const dim3 nblks(nbx);
        const dim3 nthrs(ntx);
        CUDA_KERNEL_CALL((cuda::GatherMMScatterKernel<IdType, DType>),
            nblks, nthrs, 0, stream,
            A.Ptr<DType>(),
            B.Ptr<DType>(),
            C.Ptr<DType>(),
            idx_a.Ptr<IdType>(),
            idx_b.Ptr<IdType>(),
            nullptr,
            tot_num_rows, in_len, out_len);
    });
}

/*!
 * \brief Implementation of Gather_mm operator. The input matrix A is
 *        expected to be sorted according to relation type.
 * \param A The input dense matrix of dimension m x k
 * \param B The input dense matrix of dimension k x n
 * \param C The output dense matrix of dimension m x n
 * \param idx_a The input vector to gather left hand operand on
 * \param idx_b The input vector to gather right hand operand on
 * \param idx_c The input vector to gather output operand on
 * \param num_rel The number of idx types in idx_b
 * \param a_trans Matrix A to be transposed
 * \param b_trans Matrix B to be transposed
 */
template <int XPU, typename IdType, int bits>
void GatherMMScatter(const NDArray A,
                     const NDArray B,
                     NDArray C,
                     const NDArray idx_a,
                     const NDArray idx_b,
                     const NDArray idx_c) {
    SWITCH_BITS(bits, DType, {
        auto device = runtime::DeviceAPI::Get(A->ctx);
        hipStream_t stream = runtime::getCurrentCUDAStream();
        const IdType *idx_c_data = idx_c.Ptr<IdType>();
        int64_t out_len = (B->ndim == 2)? B->shape[1] : B->shape[2];  // cols of B
        int64_t in_len = A->shape[1];  // cols of A
        int64_t tot_num_rows = A->shape[0];
        const int ntx = 128;
        const int warp_size = 32;
        const int nbx = ((tot_num_rows * warp_size + ntx - 1) / ntx);
        const dim3 nblks(nbx);
        const dim3 nthrs(ntx);
        if (B->ndim == 3) {
          CUDA_KERNEL_CALL((cuda::GatherMMScatterKernel<IdType, DType>),
              nblks, nthrs, 0, stream,
              A.Ptr<DType>(),
              B.Ptr<DType>(),
              C.Ptr<DType>(),
              idx_a.Ptr<IdType>(),
              idx_b.Ptr<IdType>(),
              idx_c.Ptr<IdType>(),
              tot_num_rows, in_len, out_len);
        } else {
          // Custom kernel for W_grad[idx_c[i]] = H^T[i] * C.grad[i]
          // This kernel accesses rows of A in a transposed way w/o explicitly converting A
          CUDA_KERNEL_CALL((cuda::GatherMMScatterKernel2<IdType, DType>),
              nblks, nthrs, 0, stream,
              A.Ptr<DType>(),
              B.Ptr<DType>(),
              C.Ptr<DType>(),
              idx_a.Ptr<IdType>(),
              idx_b.Ptr<IdType>(),
              idx_c.Ptr<IdType>(),
              tot_num_rows, in_len, out_len);
        }
    });
}


lisj's avatar
lisj committed
398
template void GatherMM<kDLROCM, int32_t, 16>(
399
400
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b);
lisj's avatar
lisj committed
401
template void GatherMM<kDLROCM, int64_t, 16>(
402
403
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b);
lisj's avatar
lisj committed
404
template void GatherMM<kDLROCM, int32_t, 32>(
405
406
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b);
lisj's avatar
lisj committed
407
template void GatherMM<kDLROCM, int64_t, 32>(
408
409
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b);
lisj's avatar
lisj committed
410
template void GatherMM<kDLROCM, int32_t, 64>(
411
412
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b);
lisj's avatar
lisj committed
413
template void GatherMM<kDLROCM, int64_t, 64>(
414
415
416
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b);

lisj's avatar
lisj committed
417
template void GatherMMScatter<kDLROCM, int32_t, 16>(
418
419
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
lisj's avatar
lisj committed
420
template void GatherMMScatter<kDLROCM, int64_t, 16>(
421
422
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
lisj's avatar
lisj committed
423
template void GatherMMScatter<kDLROCM, int32_t, 32>(
424
425
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
lisj's avatar
lisj committed
426
template void GatherMMScatter<kDLROCM, int64_t, 32>(
427
428
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
lisj's avatar
lisj committed
429
template void GatherMMScatter<kDLROCM, int32_t, 64>(
430
431
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
lisj's avatar
lisj committed
432
template void GatherMMScatter<kDLROCM, int64_t, 64>(
433
434
435
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);

lisj's avatar
lisj committed
436
template void SegmentMM<kDLROCM, int32_t, 16>(
437
438
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
lisj's avatar
lisj committed
439
template void SegmentMM<kDLROCM, int64_t, 16>(
440
441
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
lisj's avatar
lisj committed
442
template void SegmentMM<kDLROCM, int32_t, 32>(
443
444
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
lisj's avatar
lisj committed
445
template void SegmentMM<kDLROCM, int64_t, 32>(
446
447
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
lisj's avatar
lisj committed
448
template void SegmentMM<kDLROCM, int32_t, 64>(
449
450
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
lisj's avatar
lisj committed
451
template void SegmentMM<kDLROCM, int64_t, 64>(
452
453
454
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);

lisj's avatar
lisj committed
455
template void SegmentMMBackwardB<kDLROCM, int32_t, 16>(
456
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
lisj's avatar
lisj committed
457
template void SegmentMMBackwardB<kDLROCM, int64_t, 16>(
458
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
lisj's avatar
lisj committed
459
template void SegmentMMBackwardB<kDLROCM, int32_t, 32>(
460
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
lisj's avatar
lisj committed
461
template void SegmentMMBackwardB<kDLROCM, int64_t, 32>(
462
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
lisj's avatar
lisj committed
463
template void SegmentMMBackwardB<kDLROCM, int32_t, 64>(
464
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
lisj's avatar
lisj committed
465
template void SegmentMMBackwardB<kDLROCM, int64_t, 64>(
466
467
468
469
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);

}  // namespace aten
}  // namespace dgl