serialize.cc 6.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*!
 *  Copyright (c) 2019 by Contributors
 * \file serialize.cc
 * \brief Serialization for DGL distributed training.
 */
#include "serialize.h"

#include <dmlc/logging.h>
#include <dgl/immutable_graph.h>

#include <cstring>

#include "../network.h"

namespace dgl {
namespace network {

const int kNumTensor = 7;  // We need to serialize 7 conponents (tensor) here

int64_t SerializeSampledSubgraph(char* data,
21
                                 const CSRPtr csr,
22
23
24
25
26
27
28
29
30
31
32
                                 const IdArray& node_mapping,
                                 const IdArray& edge_mapping,
                                 const IdArray& layer_offsets,
                                 const IdArray& flow_offsets) {
  int64_t total_size = 0;
  // For each component, we first write its size at the
  // begining of the buffer and then write its binary data
  int64_t node_mapping_size = node_mapping->shape[0] * sizeof(dgl_id_t);
  int64_t edge_mapping_size = edge_mapping->shape[0] * sizeof(dgl_id_t);
  int64_t layer_offsets_size = layer_offsets->shape[0] * sizeof(dgl_id_t);
  int64_t flow_offsets_size = flow_offsets->shape[0] * sizeof(dgl_id_t);
33
34
35
  int64_t indptr_size = csr->indptr().GetSize();
  int64_t indices_size = csr->indices().GetSize();
  int64_t edge_ids_size = csr->edge_ids().GetSize();
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
  total_size += node_mapping_size;
  total_size += edge_mapping_size;
  total_size += layer_offsets_size;
  total_size += flow_offsets_size;
  total_size += indptr_size;
  total_size += indices_size;
  total_size += edge_ids_size;
  total_size += kNumTensor * sizeof(int64_t);
  if (total_size > kMaxBufferSize) {
    LOG(FATAL) << "Message size: (" << total_size
               << ") is larger than buffer size: ("
               << kMaxBufferSize << ")";
  }
  // Write binary data to buffer
  char* data_ptr = data;
  dgl_id_t* node_map_data = static_cast<dgl_id_t*>(node_mapping->data);
  dgl_id_t* edge_map_data = static_cast<dgl_id_t*>(edge_mapping->data);
  dgl_id_t* layer_off_data = static_cast<dgl_id_t*>(layer_offsets->data);
  dgl_id_t* flow_off_data = static_cast<dgl_id_t*>(flow_offsets->data);
55
56
57
  dgl_id_t* indptr = static_cast<dgl_id_t*>(csr->indptr()->data);
  dgl_id_t* indices = static_cast<dgl_id_t*>(csr->indices()->data);
  dgl_id_t* edge_ids = static_cast<dgl_id_t*>(csr->edge_ids()->data);
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
  // node_mapping
  *(reinterpret_cast<int64_t*>(data_ptr)) = node_mapping_size;
  data_ptr += sizeof(int64_t);
  memcpy(data_ptr, node_map_data, node_mapping_size);
  data_ptr += node_mapping_size;
  // layer_offsets
  *(reinterpret_cast<int64_t*>(data_ptr)) = layer_offsets_size;
  data_ptr += sizeof(int64_t);
  memcpy(data_ptr, layer_off_data, layer_offsets_size);
  data_ptr += layer_offsets_size;
  // flow_offsets
  *(reinterpret_cast<int64_t*>(data_ptr)) = flow_offsets_size;
  data_ptr += sizeof(int64_t);
  memcpy(data_ptr, flow_off_data, flow_offsets_size);
  data_ptr += flow_offsets_size;
  // edge_mapping
  *(reinterpret_cast<int64_t*>(data_ptr)) = edge_mapping_size;
  data_ptr += sizeof(int64_t);
  memcpy(data_ptr, edge_map_data, edge_mapping_size);
  data_ptr += edge_mapping_size;
  // indices (CSR)
  *(reinterpret_cast<int64_t*>(data_ptr)) = indices_size;
  data_ptr += sizeof(int64_t);
  memcpy(data_ptr, indices, indices_size);
  data_ptr += indices_size;
  // edge_ids (CSR)
  *(reinterpret_cast<int64_t*>(data_ptr)) = edge_ids_size;
  data_ptr += sizeof(int64_t);
  memcpy(data_ptr, edge_ids, edge_ids_size);
  data_ptr += edge_ids_size;
  // indptr (CSR)
  *(reinterpret_cast<int64_t*>(data_ptr)) = indptr_size;
  data_ptr += sizeof(int64_t);
  memcpy(data_ptr, indptr, indptr_size);
  data_ptr += indptr_size;
  return total_size;
}

void DeserializeSampledSubgraph(char* data,
97
                                CSRPtr* csr,
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                                IdArray* node_mapping,
                                IdArray* edge_mapping,
                                IdArray* layer_offsets,
                                IdArray* flow_offsets) {
  // For each component, we first read its size at the
  // begining of the buffer and then read its binary data
  char* data_ptr = data;
  // node_mapping
  int64_t tensor_size = *(reinterpret_cast<int64_t*>(data_ptr));
  int64_t num_vertices = tensor_size / sizeof(int64_t);
  data_ptr += sizeof(int64_t);
  *node_mapping = IdArray::Empty({static_cast<int64_t>(num_vertices)},
                                  DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  dgl_id_t* node_map_data = static_cast<dgl_id_t*>((*node_mapping)->data);
  memcpy(node_map_data, data_ptr, tensor_size);
  data_ptr += tensor_size;
  // layer offsets
  tensor_size = *(reinterpret_cast<int64_t*>(data_ptr));
  int64_t num_hops_add_one = tensor_size / sizeof(int64_t);
  data_ptr += sizeof(int64_t);
  *layer_offsets = IdArray::Empty({static_cast<int64_t>(num_hops_add_one)},
                                   DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  dgl_id_t* layer_off_data = static_cast<dgl_id_t*>((*layer_offsets)->data);
  memcpy(layer_off_data, data_ptr, tensor_size);
  data_ptr += tensor_size;
  // flow offsets
  tensor_size = *(reinterpret_cast<int64_t*>(data_ptr));
  int64_t num_hops = tensor_size / sizeof(int64_t);
  data_ptr += sizeof(int64_t);
  *flow_offsets = IdArray::Empty({static_cast<int64_t>(num_hops)},
                                  DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  dgl_id_t* flow_off_data = static_cast<dgl_id_t*>((*flow_offsets)->data);
  memcpy(flow_off_data, data_ptr, tensor_size);
  data_ptr += tensor_size;
  // edge_mapping
  tensor_size = *(reinterpret_cast<int64_t*>(data_ptr));
  int64_t num_edges = tensor_size / sizeof(int64_t);
  data_ptr += sizeof(int64_t);
  *edge_mapping = IdArray::Empty({static_cast<int64_t>(num_edges)},
                                  DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  dgl_id_t* edge_mapping_data = static_cast<dgl_id_t*>((*edge_mapping)->data);
  memcpy(edge_mapping_data, data_ptr, tensor_size);
  data_ptr += tensor_size;
  // Construct sub_csr_graph
142
143
  // TODO(minjie): multigraph flag
  *csr = CSRPtr(new CSR(num_vertices, num_edges, false));
144
145
146
  // indices (CSR)
  tensor_size = *(reinterpret_cast<int64_t*>(data_ptr));
  data_ptr += sizeof(int64_t);
147
  dgl_id_t* col_list_out = static_cast<dgl_id_t*>((*csr)->indices()->data);
148
149
150
151
152
  memcpy(col_list_out, data_ptr, tensor_size);
  data_ptr += tensor_size;
  // edge_ids (CSR)
  tensor_size = *(reinterpret_cast<int64_t*>(data_ptr));
  data_ptr += sizeof(int64_t);
153
  dgl_id_t* edge_ids = static_cast<dgl_id_t*>((*csr)->edge_ids()->data);
154
155
156
157
158
  memcpy(edge_ids, data_ptr, tensor_size);
  data_ptr += tensor_size;
  // indptr (CSR)
  tensor_size = *(reinterpret_cast<int64_t*>(data_ptr));
  data_ptr += sizeof(int64_t);
159
  dgl_id_t* indptr_out = static_cast<dgl_id_t*>((*csr)->indptr()->data);
160
161
162
163
164
165
  memcpy(indptr_out, data_ptr, tensor_size);
  data_ptr += tensor_size;
}

}  // namespace network
}  // namespace dgl