test_distributed_sampling.py 4.6 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import dgl
import unittest
import os
from dgl.data import CitationGraphDataset
from dgl.distributed.sampling import sample_neighbors
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import backend as F
import time
from utils import get_local_usable_addr
from pathlib import Path

from dgl.distributed import DistGraphServer, DistGraph


def start_server(rank, tmpdir):
    import dgl
    g = DistGraphServer(rank, "rpc_sampling_ip_config.txt", 1, "test_sampling",
                        tmpdir / 'test_sampling.json', disable_shared_mem=True)
    g.start()


def start_client(rank, tmpdir):
    import dgl
    _, _, _, gpb = load_partition(tmpdir / 'test_sampling.json', rank)
    dist_graph = DistGraph("rpc_sampling_ip_config.txt", "test_sampling", gpb=gpb)
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)
    dgl.distributed.shutdown_servers()
    dgl.distributed.finalize_client()
    return sampled_graph


def check_rpc_sampling(tmpdir):
    num_server = 2
    ip_config = open("rpc_sampling_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{} 1\n'.format(get_local_usable_addr()))
    ip_config.close()

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
    sampled_graph = start_client(0, tmpdir)
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_sampling():
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
        tmpdirname = "/tmp/sampling"
        check_rpc_sampling(Path(tmpdirname))

def check_rpc_sampling_shuffle(tmpdir):
    num_server = 2
    ip_config = open("rpc_sampling_ip_config.txt", "w")
    for _ in range(num_server):
        ip_config.write('{} 1\n'.format(get_local_usable_addr()))
    ip_config.close()
    
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    time.sleep(3)
    sampled_graph = start_client(0, tmpdir)
    print("Done sampling")
    for p in pserver_list:
        p.join()

    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64)
    orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64)
    for i in range(num_server):
        part, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']
        orig_eid[part.edata[dgl.EID]] = part.edata['orig_id']

    src, dst = sampled_graph.edges()
    src = orig_nid[src]
    dst = orig_nid[dst]
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))

# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_sampling_shuffle():
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
        tmpdirname = "/tmp/sampling"
        check_rpc_sampling_shuffle(Path(tmpdirname))

if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
        tmpdirname = "/tmp/sampling"
        check_rpc_sampling(Path(tmpdirname))
        check_rpc_sampling_shuffle(Path(tmpdirname))