test_pickle.py 7.87 KB
Newer Older
1
import networkx as nx
2
import scipy.sparse as ssp
Gan Quan's avatar
Gan Quan committed
3
import dgl
4
import dgl.contrib as contrib
Gan Quan's avatar
Gan Quan committed
5
6
7
from dgl.frame import Frame, FrameRef, Column
from dgl.graph_index import create_graph_index
from dgl.utils import toindex
8
9
import backend as F
import dgl.function as fn
Gan Quan's avatar
Gan Quan committed
10
11
import pickle
import io
12
13
14
import unittest, pytest
import test_utils
from test_utils import parametrize_dtype, get_cases
Gan Quan's avatar
Gan Quan committed
15

16
17
18
def _assert_is_identical(g, g2):
    assert g.is_readonly == g2.is_readonly
    assert g.number_of_nodes() == g2.number_of_nodes()
19
20
    src, dst = g.all_edges(order='eid')
    src2, dst2 = g2.all_edges(order='eid')
21
22
23
24
25
26
27
28
29
30
    assert F.array_equal(src, src2)
    assert F.array_equal(dst, dst2)

    assert len(g.ndata) == len(g2.ndata)
    assert len(g.edata) == len(g2.edata)
    for k in g.ndata:
        assert F.allclose(g.ndata[k], g2.ndata[k])
    for k in g.edata:
        assert F.allclose(g.edata[k], g2.edata[k])

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def _assert_is_identical_hetero(g, g2):
    assert g.is_readonly == g2.is_readonly
    assert g.ntypes == g2.ntypes
    assert g.canonical_etypes == g2.canonical_etypes

    # check if two metagraphs are identical
    for edges, features in g.metagraph.edges(keys=True).items():
        assert g2.metagraph.edges(keys=True)[edges] == features

    # check if node ID spaces and feature spaces are equal
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g2.number_of_nodes(ntype)
        assert len(g.nodes[ntype].data) == len(g2.nodes[ntype].data)
        for k in g.nodes[ntype].data:
            assert F.allclose(g.nodes[ntype].data[k], g2.nodes[ntype].data[k])

    # check if edge ID spaces and feature spaces are equal
    for etype in g.canonical_etypes:
        src, dst = g.all_edges(etype=etype, order='eid')
        src2, dst2 = g2.all_edges(etype=etype, order='eid')
        assert F.array_equal(src, src2)
        assert F.array_equal(dst, dst2)
        for k in g.edges[etype].data:
            assert F.allclose(g.edges[etype].data[k], g2.edges[etype].data[k])

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def _assert_is_identical_nodeflow(nf1, nf2):
    assert nf1.is_readonly == nf2.is_readonly
    assert nf1.number_of_nodes() == nf2.number_of_nodes()
    src, dst = nf1.all_edges()
    src2, dst2 = nf2.all_edges()
    assert F.array_equal(src, src2)
    assert F.array_equal(dst, dst2)

    assert nf1.num_layers == nf2.num_layers
    for i in range(nf1.num_layers):
        assert nf1.layer_size(i) == nf2.layer_size(i)
        assert nf1.layers[i].data.keys() == nf2.layers[i].data.keys()
        for k in nf1.layers[i].data:
            assert F.allclose(nf1.layers[i].data[k], nf2.layers[i].data[k])
    assert nf1.num_blocks == nf2.num_blocks
    for i in range(nf1.num_blocks):
        assert nf1.block_size(i) == nf2.block_size(i)
        assert nf1.blocks[i].data.keys() == nf2.blocks[i].data.keys()
        for k in nf1.blocks[i].data:
            assert F.allclose(nf1.blocks[i].data[k], nf2.blocks[i].data[k])

def _assert_is_identical_batchedgraph(bg1, bg2):
    _assert_is_identical(bg1, bg2)
    assert bg1.batch_size == bg2.batch_size
    assert bg1.batch_num_nodes == bg2.batch_num_nodes
    assert bg1.batch_num_edges == bg2.batch_num_edges

83
84
85
86
87
88
89
def _assert_is_identical_batchedhetero(bg1, bg2):
    _assert_is_identical_hetero(bg1, bg2)
    for ntype in bg1.ntypes:
        assert bg1.batch_num_nodes(ntype) == bg2.batch_num_nodes(ntype)
    for canonical_etype in bg1.canonical_etypes:
        assert bg1.batch_num_edges(canonical_etype) == bg2.batch_num_edges(canonical_etype)

90
91
92
93
def _assert_is_identical_index(i1, i2):
    assert i1.slice_data() == i2.slice_data()
    assert F.array_equal(i1.tousertensor(), i2.tousertensor())

Gan Quan's avatar
Gan Quan committed
94
95
96
97
98
99
100
101
102
103
def _reconstruct_pickle(obj):
    f = io.BytesIO()
    pickle.dump(obj, f)
    f.seek(0)
    obj = pickle.load(f)
    f.close()

    return obj

def test_pickling_index():
104
    # normal index
Gan Quan's avatar
Gan Quan committed
105
106
107
108
    i = toindex([1, 2, 3])
    i.tousertensor()
    i.todgltensor() # construct a dgl tensor which is unpicklable
    i2 = _reconstruct_pickle(i)
109
    _assert_is_identical_index(i, i2)
Gan Quan's avatar
Gan Quan committed
110

111
112
113
114
    # slice index
    i = toindex(slice(5, 10))
    i2 = _reconstruct_pickle(i)
    _assert_is_identical_index(i, i2)
Gan Quan's avatar
Gan Quan committed
115
116

def test_pickling_graph_index():
117
    gi = create_graph_index(None, False)
Gan Quan's avatar
Gan Quan committed
118
119
120
121
122
123
124
125
126
    gi.add_nodes(3)
    src_idx = toindex([0, 0])
    dst_idx = toindex([1, 2])
    gi.add_edges(src_idx, dst_idx)

    gi2 = _reconstruct_pickle(gi)

    assert gi2.number_of_nodes() == gi.number_of_nodes()
    src_idx2, dst_idx2, _ = gi2.edges()
127
128
    assert F.array_equal(src_idx.tousertensor(), src_idx2.tousertensor())
    assert F.array_equal(dst_idx.tousertensor(), dst_idx2.tousertensor())
Gan Quan's avatar
Gan Quan committed
129
130
131


def test_pickling_frame():
132
133
    x = F.randn((3, 7))
    y = F.randn((3, 5))
Gan Quan's avatar
Gan Quan committed
134
135
136
137

    c = Column(x)

    c2 = _reconstruct_pickle(c)
138
    assert F.allclose(c.data, c2.data)
Gan Quan's avatar
Gan Quan committed
139
140
141
142

    fr = Frame({'x': x, 'y': y})

    fr2 = _reconstruct_pickle(fr)
143
144
    assert F.allclose(fr2['x'].data, x)
    assert F.allclose(fr2['y'].data, y)
Gan Quan's avatar
Gan Quan committed
145
146
147
148
149
150
151

    fr = Frame()


def _global_message_func(nodes):
    return {'x': nodes.data['x']}

152
153
154
155
156
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(exclude=['dglgraph']))
def test_pickling_graph(g, idtype):
    g = g.astype(idtype)
157
    new_g = _reconstruct_pickle(g)
158
    test_utils.check_graph_equal(g, new_g, check_feature=True)
159

160
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def test_pickling_batched_heterograph():
    # copied from test_heterograph.create_test_heterograph()
    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)

    follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows')
    plays_g = dgl.bipartite(plays_spmat, 'user', 'plays', 'game')
    wishes_g = dgl.bipartite(wishes_nx, 'user', 'wishes', 'game')
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game')
    g = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])
    g2 = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])

    g.nodes['user'].data['u_h'] = F.randn((3, 4))
    g.nodes['game'].data['g_h'] = F.randn((2, 5))
    g.edges['plays'].data['p_h'] = F.randn((4, 6))
    g2.nodes['user'].data['u_h'] = F.randn((3, 4))
    g2.nodes['game'].data['g_h'] = F.randn((2, 5))
    g2.edges['plays'].data['p_h'] = F.randn((4, 6))

    bg = dgl.batch_hetero([g, g2])
    new_bg = _reconstruct_pickle(bg)
186
    test_utils.check_graph_equal(bg, new_bg)
187

188
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
@unittest.skipIf(dgl.backend.backend_name != "pytorch", reason="Only test for pytorch format file")
def test_pickling_heterograph_index_compatibility():
    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)

    follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows')
    plays_g = dgl.bipartite(plays_spmat, 'user', 'plays', 'game')
    wishes_g = dgl.bipartite(wishes_nx, 'user', 'wishes', 'game')
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game')
    g = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])

    with open("tests/compute/hetero_pickle_old.pkl", "rb") as f:
        gi = pickle.load(f)
        f.close()
    new_g = dgl.DGLHeteroGraph(gi, g.ntypes, g.etypes)
    _assert_is_identical_hetero(g, new_g)
209

Gan Quan's avatar
Gan Quan committed
210
211
212
213
214
if __name__ == '__main__':
    test_pickling_index()
    test_pickling_graph_index()
    test_pickling_frame()
    test_pickling_graph()
215
    test_pickling_nodeflow()
216
    test_pickling_batched_graph()
217
    test_pickling_heterograph()
218
    test_pickling_batched_heterograph()