eval_function.py 5.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import numpy as np
from sklearn import metrics
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV, ShuffleSplit, train_test_split
from sklearn.preprocessing import OneHotEncoder, normalize


def fit_logistic_regression(X, y, data_random_seed=1, repeat=1):
    # transform targets to one-hot vector
    one_hot_encoder = OneHotEncoder(categories='auto', sparse=False)

    y = one_hot_encoder.fit_transform(y.reshape(-1, 1)).astype(np.bool)

    # normalize x
    X = normalize(X, norm='l2')

    # set random state, this will ensure the dataset will be split exactly the same throughout training
    rng = np.random.RandomState(data_random_seed)

    accuracies = []
    for _ in range(repeat):
        # different random split after each repeat
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=rng)

        # grid search with one-vs-rest classifiers
        logreg = LogisticRegression(solver='liblinear')
        c = 2.0 ** np.arange(-10, 11)
        cv = ShuffleSplit(n_splits=5, test_size=0.5)
        clf = GridSearchCV(estimator=OneVsRestClassifier(logreg), param_grid=dict(estimator__C=c),
                           n_jobs=5, cv=cv, verbose=0)
        clf.fit(X_train, y_train)

        y_pred = clf.predict_proba(X_test)
        y_pred = np.argmax(y_pred, axis=1)
        y_pred = one_hot_encoder.transform(y_pred.reshape(-1, 1)).astype(np.bool)

        test_acc = metrics.accuracy_score(y_test, y_pred)
        accuracies.append(test_acc)
    return accuracies


def fit_logistic_regression_preset_splits(X, y, train_mask, val_mask, test_mask):
    # transform targets to one-hot vector
    one_hot_encoder = OneHotEncoder(categories='auto', sparse=False)
    y = one_hot_encoder.fit_transform(y.reshape(-1, 1)).astype(np.bool)

    # normalize x
    X = normalize(X, norm='l2')

    accuracies = []
    for split_id in range(train_mask.shape[1]):
        # get train/val/test masks
        tmp_train_mask, tmp_val_mask = train_mask[:, split_id], val_mask[:, split_id]

        # make custom cv
        X_train, y_train = X[tmp_train_mask], y[tmp_train_mask]
        X_val, y_val = X[tmp_val_mask], y[tmp_val_mask]
        X_test, y_test = X[test_mask], y[test_mask]

        # grid search with one-vs-rest classifiers
        best_test_acc, best_acc = 0, 0
        for c in 2.0 ** np.arange(-10, 11):
            clf = OneVsRestClassifier(LogisticRegression(solver='liblinear', C=c))
            clf.fit(X_train, y_train)

            y_pred = clf.predict_proba(X_val)
            y_pred = np.argmax(y_pred, axis=1)
            y_pred = one_hot_encoder.transform(y_pred.reshape(-1, 1)).astype(np.bool)
            val_acc = metrics.accuracy_score(y_val, y_pred)
            if val_acc > best_acc:
                best_acc = val_acc
                y_pred = clf.predict_proba(X_test)
                y_pred = np.argmax(y_pred, axis=1)
                y_pred = one_hot_encoder.transform(y_pred.reshape(-1, 1)).astype(np.bool)
                best_test_acc = metrics.accuracy_score(y_test, y_pred)

        accuracies.append(best_test_acc)
    return accuracies


def fit_ppi_linear(num_classes, train_data, val_data, test_data, device, repeat=1):
    r"""
        Trains a linear layer on top of the representations. This function is specific to the PPI dataset,
        which has multiple labels.
        """

    def train(classifier, train_data, optimizer):
        classifier.train()

        x, label = train_data
        x, label = x.to(device), label.to(device)
        for step in range(100):
            # forward
            optimizer.zero_grad()
            pred_logits = classifier(x)

            # loss and backprop
            loss = criterion(pred_logits, label)
            loss.backward()
            optimizer.step()

    def test(classifier, data):
        classifier.eval()
        x, label = data
        label = label.cpu().numpy().squeeze()

        # feed to network and classifier
        with torch.no_grad():
            pred_logits = classifier(x.to(device))
            pred_class = (pred_logits > 0).float().cpu().numpy()

        return metrics.f1_score(label, pred_class, average='micro') if pred_class.sum() > 0 else 0

    num_feats = train_data[0].size(1)
    criterion = torch.nn.BCEWithLogitsLoss()

    # normalization
    mean, std = train_data[0].mean(0, keepdim=True), train_data[0].std(0, unbiased=False, keepdim=True)
    train_data[0] = (train_data[0] - mean) / std
    val_data[0] = (val_data[0] - mean) / std
    test_data[0] = (test_data[0] - mean) / std

    best_val_f1 = []
    test_f1 = []
    for _ in range(repeat):
        tmp_best_val_f1 = 0
        tmp_test_f1 = 0
        for weight_decay in 2.0 ** np.arange(-10, 11, 2):
            classifier = torch.nn.Linear(num_feats, num_classes).to(device)
            optimizer = torch.optim.AdamW(params=classifier.parameters(), lr=0.01, weight_decay=weight_decay)

            train(classifier, train_data, optimizer)
            val_f1 = test(classifier, val_data)
            if val_f1 > tmp_best_val_f1:
                tmp_best_val_f1 = val_f1
                tmp_test_f1 = test(classifier, test_data)
        best_val_f1.append(tmp_best_val_f1)
        test_f1.append(tmp_test_f1)

    return [best_val_f1], [test_f1]