ndarray.cc 17.5 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
/*!
 *  Copyright (c) 2017 by Contributors
 * \file ndarray.cc
 * \brief NDArray container infratructure.
 */
6
#include <string.h>
Minjie Wang's avatar
Minjie Wang committed
7
8
9
10
#include <dmlc/logging.h>
#include <dgl/runtime/ndarray.h>
#include <dgl/runtime/c_runtime_api.h>
#include <dgl/runtime/device_api.h>
11
12
#include <dgl/runtime/shared_mem.h>
#include <dgl/zerocopy_serializer.h>
13
#include <dgl/runtime/tensordispatch.h>
Minjie Wang's avatar
Minjie Wang committed
14
15
16
17
18
#include "runtime_base.h"

// deleter for arrays used by DLPack exporter
extern "C" void NDArrayDLPackDeleter(DLManagedTensor* tensor);

19
namespace dgl {
20

21
22
constexpr DLDataType DLDataTypeTraits<int8_t>::dtype;
constexpr DLDataType DLDataTypeTraits<int16_t>::dtype;
23
24
25
26
27
28
29
constexpr DLDataType DLDataTypeTraits<int32_t>::dtype;
constexpr DLDataType DLDataTypeTraits<int64_t>::dtype;
constexpr DLDataType DLDataTypeTraits<uint32_t>::dtype;
constexpr DLDataType DLDataTypeTraits<uint64_t>::dtype;
constexpr DLDataType DLDataTypeTraits<float>::dtype;
constexpr DLDataType DLDataTypeTraits<double>::dtype;

Minjie Wang's avatar
Minjie Wang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
namespace runtime {

inline void VerifyDataType(DLDataType dtype) {
  CHECK_GE(dtype.lanes, 1);
  if (dtype.code == kDLFloat) {
    CHECK_EQ(dtype.bits % 8, 0);
  } else {
    CHECK_EQ(dtype.bits % 8, 0);
  }
  CHECK_EQ(dtype.bits & (dtype.bits - 1), 0);
}

inline size_t GetDataSize(const DLTensor& arr) {
  size_t size = 1;
44
  for (dgl_index_t i = 0; i < arr.ndim; ++i) {
Minjie Wang's avatar
Minjie Wang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    size *= arr.shape[i];
  }
  size *= (arr.dtype.bits * arr.dtype.lanes + 7) / 8;
  return size;
}

inline size_t GetDataAlignment(const DLTensor& arr) {
  size_t align = (arr.dtype.bits / 8) * arr.dtype.lanes;
  if (align < kAllocAlignment) return kAllocAlignment;
  return align;
}

struct NDArray::Internal {
  // Default deleter for the container
  static void DefaultDeleter(NDArray::Container* ptr) {
60
    using dgl::runtime::NDArray;
Minjie Wang's avatar
Minjie Wang committed
61
62
    if (ptr->manager_ctx != nullptr) {
      static_cast<NDArray::Container*>(ptr->manager_ctx)->DecRef();
63
64
    } else if (ptr->mem) {
      ptr->mem = nullptr;
Minjie Wang's avatar
Minjie Wang committed
65
    } else if (ptr->dl_tensor.data != nullptr) {
66
67
68
69
      // if the array is still pinned before freeing, unpin it.
      if (ptr->dl_tensor.ctx.device_type == kDLCPUPinned) {
        UnpinData(&(ptr->dl_tensor));
      }
70
      dgl::runtime::DeviceAPI::Get(ptr->dl_tensor.ctx)->FreeDataSpace(
Minjie Wang's avatar
Minjie Wang committed
71
72
73
74
75
76
          ptr->dl_tensor.ctx, ptr->dl_tensor.data);
    }
    delete ptr;
  }
  // Deleter for NDArray converted from DLPack
  // This is used from data which is passed from external DLPack(DLManagedTensor)
77
  // that are not allocated inside of DGL.
Minjie Wang's avatar
Minjie Wang committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
  // This enables us to create NDArray from memory allocated by other
  // frameworks that are DLPack compatible
  static void DLPackDeleter(NDArray::Container* ptr) {
    DLManagedTensor* tensor = static_cast<DLManagedTensor*>(ptr->manager_ctx);
    if (tensor->deleter != nullptr) {
      (*tensor->deleter)(tensor);
    }
    delete ptr;
  }
  // Local create function which allocates tensor metadata
  // but does not allocate space for the data.
  static NDArray Create(std::vector<int64_t> shape,
                        DLDataType dtype,
                        DLContext ctx) {
    VerifyDataType(dtype);
    // critical zone
    NDArray::Container* data = new NDArray::Container();
    data->deleter = DefaultDeleter;
    NDArray ret(data);
    ret.data_ = data;
    // RAII now in effect
    // setup shape
    data->shape_ = std::move(shape);
    data->dl_tensor.shape = dmlc::BeginPtr(data->shape_);
    data->dl_tensor.ndim = static_cast<int>(data->shape_.size());
103
104
105
106
107
108
109
    // setup stride (this should be optional, but some framework
    //   does not support NULL stride and thus will crash the program).
    data->stride_.resize(data->dl_tensor.ndim, 1);
    for (int i = data->dl_tensor.ndim - 2; i >= 0; --i) {
      data->stride_[i] = data->shape_[i+1] * data->stride_[i+1];
    }
    data->dl_tensor.strides = dmlc::BeginPtr(data->stride_);
Minjie Wang's avatar
Minjie Wang committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    // setup dtype
    data->dl_tensor.dtype = dtype;
    // setup ctx
    data->dl_tensor.ctx = ctx;
    return ret;
  }
  // Implementation of API function
  static DLTensor* MoveAsDLTensor(NDArray arr) {
    DLTensor* tensor = const_cast<DLTensor*>(arr.operator->());
    CHECK(reinterpret_cast<DLTensor*>(arr.data_) == tensor);
    arr.data_ = nullptr;
    return tensor;
  }
  // Container to DLManagedTensor
  static DLManagedTensor* ToDLPack(NDArray::Container* from) {
    CHECK(from != nullptr);
    DLManagedTensor* ret = new DLManagedTensor();
    ret->dl_tensor = from->dl_tensor;
    ret->manager_ctx = from;
    from->IncRef();
    ret->deleter = NDArrayDLPackDeleter;
    return ret;
  }
};

135
136
137
138
size_t NDArray::GetSize() const {
  return GetDataSize(data_->dl_tensor);
}

139
int64_t NDArray::NumElements() const {
140
141
  if (data_->dl_tensor.ndim == 0)
    return 0;
142
143
144
145
146
147
148
  int64_t size = 1;
  for (int i = 0; i < data_->dl_tensor.ndim; ++i) {
    size *= data_->dl_tensor.shape[i];
  }
  return size;
}

149
150
151
152
bool NDArray::IsContiguous() const {
  CHECK(data_ != nullptr);
  if (data_->dl_tensor.strides == nullptr)
    return true;
153
154
155
156
157
158
159
160
161
162

  // See https://github.com/dmlc/dgl/issues/2118 and PyTorch's compute_contiguous() implementation
  int64_t z = 1;
  for (int64_t i = data_->dl_tensor.ndim - 1; i >= 0; --i) {
    if (data_->dl_tensor.shape[i] != 1) {
      if (data_->dl_tensor.strides[i] == z)
        z *= data_->dl_tensor.shape[i];
      else
        return false;
    }
163
  }
164
  return true;
165
166
}

Minjie Wang's avatar
Minjie Wang committed
167
NDArray NDArray::CreateView(std::vector<int64_t> shape,
168
169
                            DLDataType dtype,
                            int64_t offset) {
Minjie Wang's avatar
Minjie Wang committed
170
  CHECK(data_ != nullptr);
171
  CHECK(IsContiguous()) << "Can only create view for compact tensor";
Minjie Wang's avatar
Minjie Wang committed
172
173
174
175
176
177
178
179
180
181
  NDArray ret = Internal::Create(shape, dtype, data_->dl_tensor.ctx);
  ret.data_->dl_tensor.byte_offset =
      this->data_->dl_tensor.byte_offset;
  size_t curr_size = GetDataSize(this->data_->dl_tensor);
  size_t view_size = GetDataSize(ret.data_->dl_tensor);
  CHECK_LE(view_size, curr_size)
      << "Tries to create a view that has bigger memory than current one";
  // increase ref count
  this->data_->IncRef();
  ret.data_->manager_ctx = this->data_;
182
183
  ret.data_->dl_tensor.data =
    static_cast<char*>(this->data_->dl_tensor.data) + offset;
Minjie Wang's avatar
Minjie Wang committed
184
185
186
187
188
189
190
  return ret;
}

DLManagedTensor* NDArray::ToDLPack() const {
  return Internal::ToDLPack(data_);
}

191
192
193
194
195
196
197
198
199
NDArray NDArray::EmptyShared(const std::string &name,
                       std::vector<int64_t> shape,
                       DLDataType dtype,
                       DLContext ctx, bool is_create) {
  NDArray ret = Internal::Create(shape, dtype, ctx);
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
  auto mem = std::make_shared<SharedMemory>(name);
  if (is_create) {
200
    ret.data_->dl_tensor.data = mem->CreateNew(size);
201
  } else {
202
    ret.data_->dl_tensor.data = mem->Open(size);
203
204
205
206
207
208
  }

  ret.data_->mem = mem;
  return ret;
}

209
210
211
212
213
214
215
216
217
218
219
220
221
inline DLContext GetDevice(DLContext ctx) {
  switch (ctx.device_type) {
    case kDLCPU:
    case kDLGPU:
      return ctx;
      break;
    default:
      // fallback to CPU
      return DLContext{kDLCPU, 0};
      break;
  }
}

Minjie Wang's avatar
Minjie Wang committed
222
NDArray NDArray::Empty(std::vector<int64_t> shape,
223
224
                       DLDataType dtype,
                       DLContext ctx) {
225
226
227
228
  TensorDispatcher* td = TensorDispatcher::Global();
  if (td->IsAvailable())
    return td->Empty(shape, dtype, ctx);

229
  NDArray ret = Internal::Create(shape, dtype, GetDevice(ctx));
Minjie Wang's avatar
Minjie Wang committed
230
231
232
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
  size_t alignment = GetDataAlignment(ret.data_->dl_tensor);
233
234
235
236
  if (size > 0)
    ret.data_->dl_tensor.data =
        DeviceAPI::Get(ret->ctx)->AllocDataSpace(
            ret->ctx, size, alignment, ret->dtype);
Minjie Wang's avatar
Minjie Wang committed
237
238
239
240
241
242
243
244
245
246
247
248
249
  return ret;
}

NDArray NDArray::FromDLPack(DLManagedTensor* tensor) {
  NDArray::Container* data = new NDArray::Container();
  data->deleter = Internal::DLPackDeleter;
  data->manager_ctx = tensor;
  data->dl_tensor = tensor->dl_tensor;
  return NDArray(data);
}

void NDArray::CopyFromTo(DLTensor* from,
                         DLTensor* to,
250
                         DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
251
252
253
  size_t from_size = GetDataSize(*from);
  size_t to_size = GetDataSize(*to);
  CHECK_EQ(from_size, to_size)
254
    << "DGLArrayCopyFromTo: The size must exactly match";
Minjie Wang's avatar
Minjie Wang committed
255
256
257
258
259
260
261
262

  CHECK(from->ctx.device_type == to->ctx.device_type
        || from->ctx.device_type == kDLCPU
        || to->ctx.device_type == kDLCPU)
    << "Can not copy across different ctx types directly";

  // Use the context that is *not* a cpu context to get the correct device
  // api manager.
263
  DGLContext ctx = from->ctx.device_type != kDLCPU ? from->ctx : to->ctx;
Minjie Wang's avatar
Minjie Wang committed
264
265
266
267
268
269
270

  DeviceAPI::Get(ctx)->CopyDataFromTo(
    from->data, static_cast<size_t>(from->byte_offset),
    to->data, static_cast<size_t>(to->byte_offset),
    from_size, from->ctx, to->ctx, from->dtype, stream);
}

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
void NDArray::PinData(DLTensor* tensor) {
  // Only need to call PinData once, since the pinned memory can be seen
  // by all CUDA contexts, not just the one that performed the allocation
  if (tensor->ctx.device_type == kDLCPUPinned) return;
  CHECK_EQ(tensor->ctx.device_type, kDLCPU)
    << "Only NDArray on CPU can be pinned";
  DeviceAPI::Get(kDLGPU)->PinData(tensor->data, GetDataSize(*tensor));
  tensor->ctx = DLContext{kDLCPUPinned, 0};
}

void NDArray::UnpinData(DLTensor* tensor) {
  if (tensor->ctx.device_type != kDLCPUPinned) return;
  DeviceAPI::Get(kDLGPU)->UnpinData(tensor->data);
  tensor->ctx = DLContext{kDLCPU, 0};
}

287
template<typename T>
288
289
NDArray NDArray::FromVector(const std::vector<T>& vec, DLContext ctx) {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
290
  int64_t size = static_cast<int64_t>(vec.size());
291
  NDArray ret = NDArray::Empty({size}, dtype, ctx);
292
293
294
295
296
297
298
299
300
301
302
303
304
305
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      vec.data(),
      0,
      static_cast<T*>(ret->data),
      0,
      size * sizeof(T),
      DLContext{kDLCPU, 0},
      ctx,
      dtype,
      nullptr);
  return ret;
}

// export specializations
306
307
308
309
310
311
template NDArray NDArray::FromVector<int32_t>(const std::vector<int32_t>&, DLContext);
template NDArray NDArray::FromVector<int64_t>(const std::vector<int64_t>&, DLContext);
template NDArray NDArray::FromVector<uint32_t>(const std::vector<uint32_t>&, DLContext);
template NDArray NDArray::FromVector<uint64_t>(const std::vector<uint64_t>&, DLContext);
template NDArray NDArray::FromVector<float>(const std::vector<float>&, DLContext);
template NDArray NDArray::FromVector<double>(const std::vector<double>&, DLContext);
312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
template<typename T>
std::vector<T> NDArray::ToVector() const {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
  CHECK(data_->dl_tensor.ndim == 1) << "ToVector() only supported for 1D arrays";
  CHECK(data_->dl_tensor.dtype == dtype) << "dtype mismatch";

  int64_t size = data_->dl_tensor.shape[0];
  std::vector<T> vec(size);
  const DLContext &ctx = data_->dl_tensor.ctx;
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      static_cast<T*>(data_->dl_tensor.data),
      0,
      vec.data(),
      0,
      size * sizeof(T),
      ctx,
      DLContext{kDLCPU, 0},
      dtype,
      nullptr);
  return vec;
}

template std::vector<int32_t> NDArray::ToVector<int32_t>() const;
template std::vector<int64_t> NDArray::ToVector<int64_t>() const;
template std::vector<uint32_t> NDArray::ToVector<uint32_t>() const;
template std::vector<uint64_t> NDArray::ToVector<uint64_t>() const;
template std::vector<float> NDArray::ToVector<float>() const;
template std::vector<double> NDArray::ToVector<double>() const;
341

342
343
344
345
346
347
std::shared_ptr<SharedMemory> NDArray::GetSharedMem() const {
  return this->data_->mem;
}


void NDArray::Save(dmlc::Stream* strm) const {
348
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
349
350
351
352
353
354
355
356
  if (zc_strm) {
    zc_strm->PushNDArray(*this);
    return;
  }
  SaveDLTensor(strm, const_cast<DLTensor*>(operator->()));
}

bool NDArray::Load(dmlc::Stream* strm) {
357
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
  if (zc_strm) {
    *this = zc_strm->PopNDArray();
    return true;
  }
  uint64_t header, reserved;
  CHECK(strm->Read(&header))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&reserved))
      << "Invalid DLTensor file format";
  CHECK(header == kDGLNDArrayMagic)
      << "Invalid DLTensor file format";
  DLContext ctx;
  int ndim;
  DLDataType dtype;
  CHECK(strm->Read(&ctx))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&ndim))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&dtype))
      << "Invalid DLTensor file format";
  CHECK_EQ(ctx.device_type, kDLCPU)
      << "Invalid DLTensor context: can only save as CPU tensor";
  std::vector<int64_t> shape(ndim);
  if (ndim != 0) {
    CHECK(strm->ReadArray(&shape[0], ndim))
        << "Invalid DLTensor file format";
  }
  NDArray ret = NDArray::Empty(shape, dtype, ctx);
  int64_t num_elems = 1;
  int elem_bytes = (ret->dtype.bits + 7) / 8;
  for (int i = 0; i < ret->ndim; ++i) {
    num_elems *= ret->shape[i];
  }
  int64_t data_byte_size;
  CHECK(strm->Read(&data_byte_size))
      << "Invalid DLTensor file format";
  CHECK(data_byte_size == num_elems * elem_bytes)
      << "Invalid DLTensor file format";
  if (data_byte_size != 0)  {
    // strm->Read will return the total number of elements successfully read.
    // Therefore if data_byte_size is zero, the CHECK below would fail.
    CHECK(strm->Read(ret->data, data_byte_size))
        << "Invalid DLTensor file format";
  }
  if (!DMLC_IO_NO_ENDIAN_SWAP) {
    dmlc::ByteSwap(ret->data, elem_bytes, num_elems);
  }
  *this = ret;
  return true;
}


Minjie Wang's avatar
Minjie Wang committed
410
}  // namespace runtime
411
}  // namespace dgl
Minjie Wang's avatar
Minjie Wang committed
412

413
using namespace dgl::runtime;
Minjie Wang's avatar
Minjie Wang committed
414
415
416
417
418
419

void NDArrayDLPackDeleter(DLManagedTensor* tensor) {
  static_cast<NDArray::Container*>(tensor->manager_ctx)->DecRef();
  delete tensor;
}

420
int DGLArrayAlloc(const dgl_index_t* shape,
Minjie Wang's avatar
Minjie Wang committed
421
422
423
424
425
426
                  int ndim,
                  int dtype_code,
                  int dtype_bits,
                  int dtype_lanes,
                  int device_type,
                  int device_id,
427
                  DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
428
429
430
431
432
433
434
435
436
437
438
439
440
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  DLContext ctx;
  ctx.device_type = static_cast<DLDeviceType>(device_type);
  ctx.device_id = device_id;
  *out = NDArray::Internal::MoveAsDLTensor(
      NDArray::Empty(std::vector<int64_t>(shape, shape + ndim), dtype, ctx));
  API_END();
}

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
int DGLArrayAllocSharedMem(const char *mem_name,
                           const dgl_index_t *shape,
                           int ndim,
                           int dtype_code,
                           int dtype_bits,
                           int dtype_lanes,
                           bool is_create,
                           DGLArrayHandle* out) {
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  std::vector<int64_t> shape_vec(shape, shape + ndim);
  NDArray arr = NDArray::EmptyShared(mem_name, shape_vec, dtype,
                                     DLContext{kDLCPU, 0}, is_create);
  *out = NDArray::Internal::MoveAsDLTensor(arr);
  API_END();
}

461
int DGLArrayFree(DGLArrayHandle handle) {
Minjie Wang's avatar
Minjie Wang committed
462
463
464
465
466
  API_BEGIN();
  reinterpret_cast<NDArray::Container*>(handle)->DecRef();
  API_END();
}

467
468
469
int DGLArrayCopyFromTo(DGLArrayHandle from,
                       DGLArrayHandle to,
                       DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
470
471
472
473
474
  API_BEGIN();
  NDArray::CopyFromTo(from, to, stream);
  API_END();
}

475
476
int DGLArrayFromDLPack(DLManagedTensor* from,
                       DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
477
478
479
480
481
  API_BEGIN();
  *out = NDArray::Internal::MoveAsDLTensor(NDArray::FromDLPack(from));
  API_END();
}

482
483
484
485
486
487
488
inline bool is_aligned(const void* ptr, std::uintptr_t alignment) noexcept {
  auto iptr = reinterpret_cast<std::uintptr_t>(ptr);
  return !(iptr % alignment);
}

int DGLArrayToDLPack(DGLArrayHandle from, DLManagedTensor** out,
                     int alignment) {
Minjie Wang's avatar
Minjie Wang committed
489
  API_BEGIN();
490
491
492
493
494
495
496
497
498
499
  auto* nd_container = reinterpret_cast<NDArray::Container*>(from);
  DLTensor* nd = &(nd_container->dl_tensor);
  if (alignment != 0 && !is_aligned(nd->data, alignment)) {
    std::vector<int64_t> shape_vec(nd->shape, nd->shape + nd->ndim);
    NDArray copy_ndarray = NDArray::Empty(shape_vec, nd->dtype, nd->ctx);
    copy_ndarray.CopyFrom(nd);
    *out = copy_ndarray.ToDLPack();
  } else {
    *out = NDArray::Internal::ToDLPack(nd_container);
  }
Minjie Wang's avatar
Minjie Wang committed
500
501
502
  API_END();
}

503
void DGLDLManagedTensorCallDeleter(DLManagedTensor* dltensor) {
Minjie Wang's avatar
Minjie Wang committed
504
505
506
  (*(dltensor->deleter))(dltensor);
}

507
int DGLArrayCopyFromBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
508
509
510
                          void* data,
                          size_t nbytes) {
  API_BEGIN();
511
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
512
513
514
515
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
516
      << "DGLArrayCopyFromBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
517
518
519
520
521
522
523
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      data, 0,
      handle->data, static_cast<size_t>(handle->byte_offset),
      nbytes, cpu_ctx, handle->ctx, handle->dtype, nullptr);
  API_END();
}

524
int DGLArrayCopyToBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
525
526
527
                        void* data,
                        size_t nbytes) {
  API_BEGIN();
528
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
529
530
531
532
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
533
      << "DGLArrayCopyToBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
534
535
536
537
538
539
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      handle->data, static_cast<size_t>(handle->byte_offset),
      data, 0,
      nbytes, handle->ctx, cpu_ctx, handle->dtype, nullptr);
  API_END();
}
540
541
542
543

int DGLArrayPinData(DGLArrayHandle handle,
                    DLContext ctx) {
  API_BEGIN();
544
  NDArray::PinData(handle);
545
546
547
548
549
550
  API_END();
}

int DGLArrayUnpinData(DGLArrayHandle handle,
                      DLContext ctx) {
  API_BEGIN();
551
  NDArray::UnpinData(handle);
552
553
  API_END();
}