models.py 4.6 KB
Newer Older
Ereboas's avatar
Ereboas committed
1
2
3
4
5
6
7
8
9
import math

import torch
import torch.nn.functional as F
from dgl.nn import GraphConv, SortPooling
from torch.nn import Conv1d, Embedding, Linear, MaxPool1d, ModuleList


class NGNN_GCNConv(torch.nn.Module):
10
11
12
    def __init__(
        self, input_channels, hidden_channels, output_channels, num_layers
    ):
Ereboas's avatar
Ereboas committed
13
14
15
16
        super(NGNN_GCNConv, self).__init__()
        self.conv = GraphConv(input_channels, hidden_channels)
        self.fc = Linear(hidden_channels, hidden_channels)
        self.fc2 = Linear(hidden_channels, output_channels)
17
        self.num_layers = num_layers
Ereboas's avatar
Ereboas committed
18
19
20
21
22
23
24
25
26
27
28
29

    def reset_parameters(self):
        self.conv.reset_parameters()
        gain = torch.nn.init.calculate_gain("relu")
        torch.nn.init.xavier_uniform_(self.fc.weight, gain=gain)
        torch.nn.init.xavier_uniform_(self.fc2.weight, gain=gain)
        for bias in [self.fc.bias, self.fc2.bias]:
            stdv = 1.0 / math.sqrt(bias.size(0))
            bias.data.uniform_(-stdv, stdv)

    def forward(self, g, x, edge_weight=None):
        x = self.conv(g, x, edge_weight)
30
31
32
        if self.num_layers == 2:
            x = F.relu(x)
            x = self.fc(x)
Ereboas's avatar
Ereboas committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
        x = F.relu(x)
        x = self.fc2(x)
        return x


# An end-to-end deep learning architecture for graph classification, AAAI-18.
class DGCNN(torch.nn.Module):
    def __init__(
        self,
        hidden_channels,
        num_layers,
        max_z,
        k,
        feature_dim=0,
        GNN=GraphConv,
        NGNN=NGNN_GCNConv,
        dropout=0.0,
        ngnn_type="all",
51
        num_ngnn_layers=1,
Ereboas's avatar
Ereboas committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    ):
        super(DGCNN, self).__init__()

        self.feature_dim = feature_dim
        self.dropout = dropout

        self.k = k
        self.sort_pool = SortPooling(k=self.k)

        self.max_z = max_z
        self.z_embedding = Embedding(self.max_z, hidden_channels)

        self.convs = ModuleList()
        initial_channels = hidden_channels + self.feature_dim

67
        self.num_ngnn_layers = num_ngnn_layers
Ereboas's avatar
Ereboas committed
68
69
        if ngnn_type in ["input", "all"]:
            self.convs.append(
70
71
72
73
74
75
                NGNN(
                    initial_channels,
                    hidden_channels,
                    hidden_channels,
                    self.num_ngnn_layers,
                )
Ereboas's avatar
Ereboas committed
76
77
78
79
80
81
82
            )
        else:
            self.convs.append(GNN(initial_channels, hidden_channels))

        if ngnn_type in ["hidden", "all"]:
            for _ in range(0, num_layers - 1):
                self.convs.append(
83
84
85
86
87
88
                    NGNN(
                        hidden_channels,
                        hidden_channels,
                        hidden_channels,
                        self.num_ngnn_layers,
                    )
Ereboas's avatar
Ereboas committed
89
90
91
92
93
94
                )
        else:
            for _ in range(0, num_layers - 1):
                self.convs.append(GNN(hidden_channels, hidden_channels))

        if ngnn_type in ["output", "all"]:
95
96
97
            self.convs.append(
                NGNN(hidden_channels, hidden_channels, 1, self.num_ngnn_layers)
            )
Ereboas's avatar
Ereboas committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        else:
            self.convs.append(GNN(hidden_channels, 1))

        conv1d_channels = [16, 32]
        total_latent_dim = hidden_channels * num_layers + 1
        conv1d_kws = [total_latent_dim, 5]
        self.conv1 = Conv1d(1, conv1d_channels[0], conv1d_kws[0], conv1d_kws[0])
        self.maxpool1d = MaxPool1d(2, 2)
        self.conv2 = Conv1d(
            conv1d_channels[0], conv1d_channels[1], conv1d_kws[1], 1
        )
        dense_dim = int((self.k - 2) / 2 + 1)
        dense_dim = (dense_dim - conv1d_kws[1] + 1) * conv1d_channels[1]
        self.lin1 = Linear(dense_dim, 128)
        self.lin2 = Linear(128, 1)

    def forward(self, g, z, x=None, edge_weight=None):
        z_emb = self.z_embedding(z)
        if z_emb.ndim == 3:  # in case z has multiple integer labels
            z_emb = z_emb.sum(dim=1)
        if x is not None:
            x = torch.cat([z_emb, x.to(torch.float)], 1)
        else:
            x = z_emb
        xs = [x]

        for conv in self.convs:
            xs += [
                F.dropout(
                    torch.tanh(conv(g, xs[-1], edge_weight=edge_weight)),
                    p=self.dropout,
                    training=self.training,
                )
            ]
        x = torch.cat(xs[1:], dim=-1)

        # global pooling
        x = self.sort_pool(g, x)
        x = x.unsqueeze(1)  # [num_graphs, 1, k * hidden]
        x = F.relu(self.conv1(x))
        x = self.maxpool1d(x)
        x = F.relu(self.conv2(x))
        x = x.view(x.size(0), -1)  # [num_graphs, dense_dim]

        # MLP.
        x = F.relu(self.lin1(x))
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.lin2(x)
        return x