neighbor.cc 8.53 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*!
 *  Copyright (c) 2020 by Contributors
 * \file graph/sampling/neighbor.cc
 * \brief Definition of neighborhood-based sampler APIs.
 */

#include <dgl/runtime/container.h>
#include <dgl/packed_func_ext.h>
#include <dgl/array.h>
#include <dgl/sampling/neighbor.h>
#include "../../../c_api_common.h"
#include "../../unit_graph.h"

using namespace dgl::runtime;
using namespace dgl::aten;

namespace dgl {
namespace sampling {

HeteroSubgraph SampleNeighbors(
    const HeteroGraphPtr hg,
    const std::vector<IdArray>& nodes,
    const std::vector<int64_t>& fanouts,
    EdgeDir dir,
    const std::vector<FloatArray>& prob,
    bool replace) {

  // sanity check
  CHECK_EQ(nodes.size(), hg->NumVertexTypes())
    << "Number of node ID tensors must match the number of node types.";
  CHECK_EQ(fanouts.size(), hg->NumEdgeTypes())
    << "Number of fanout values must match the number of edge types.";
  CHECK_EQ(prob.size(), hg->NumEdgeTypes())
    << "Number of probability tensors must match the number of edge types.";

  std::vector<HeteroGraphPtr> subrels(hg->NumEdgeTypes());
  std::vector<IdArray> induced_edges(hg->NumEdgeTypes());
  for (dgl_type_t etype = 0; etype < hg->NumEdgeTypes(); ++etype) {
    auto pair = hg->meta_graph()->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    const IdArray nodes_ntype = nodes[(dir == EdgeDir::kOut)? src_vtype : dst_vtype];
    const int64_t num_nodes = nodes_ntype->shape[0];
    if (num_nodes == 0) {
      // No node provided in the type, create a placeholder relation graph
      subrels[etype] = UnitGraph::Empty(
        hg->GetRelationGraph(etype)->NumVertexTypes(),
        hg->NumVertices(src_vtype),
        hg->NumVertices(dst_vtype),
        hg->DataType(), hg->Context());
      induced_edges[etype] = IdArray::Empty({0}, hg->DataType(), hg->Context());
    } else {
      // sample from one relation graph
      auto req_fmt = (dir == EdgeDir::kOut)? SparseFormat::CSR : SparseFormat::CSC;
      auto avail_fmt = hg->SelectFormat(etype, req_fmt);
      COOMatrix sampled_coo;
      switch (avail_fmt) {
        case SparseFormat::COO:
          if (dir == EdgeDir::kIn) {
            sampled_coo = aten::COOTranspose(aten::COORowWiseSampling(
              aten::COOTranspose(hg->GetCOOMatrix(etype)),
              nodes_ntype, fanouts[etype], prob[etype], replace));
          } else {
            sampled_coo = aten::COORowWiseSampling(
              hg->GetCOOMatrix(etype), nodes_ntype, fanouts[etype], prob[etype], replace);
          }
          break;
        case SparseFormat::CSR:
          CHECK(dir == EdgeDir::kOut) << "Cannot sample out edges on CSC matrix.";
          sampled_coo = aten::CSRRowWiseSampling(
            hg->GetCSRMatrix(etype), nodes_ntype, fanouts[etype], prob[etype], replace);
          break;
        case SparseFormat::CSC:
          CHECK(dir == EdgeDir::kIn) << "Cannot sample in edges on CSR matrix.";
          sampled_coo = aten::CSRRowWiseSampling(
            hg->GetCSCMatrix(etype), nodes_ntype, fanouts[etype], prob[etype], replace);
          sampled_coo = aten::COOTranspose(sampled_coo);
          break;
        default:
          LOG(FATAL) << "Unsupported sparse format.";
      }
      subrels[etype] = UnitGraph::CreateFromCOO(
        hg->GetRelationGraph(etype)->NumVertexTypes(), sampled_coo);
      if (sampled_coo.data.defined()) {
        induced_edges[etype] = sampled_coo.data;
      } else {
        induced_edges[etype] = IdArray::Empty({0}, hg->DataType(), hg->Context());
      }
    }
  }

  HeteroSubgraph ret;
  ret.graph = CreateHeteroGraph(hg->meta_graph(), subrels);
  ret.induced_vertices.resize(hg->NumVertexTypes());
  ret.induced_edges = std::move(induced_edges);
  return ret;
}

HeteroSubgraph SampleNeighborsTopk(
    const HeteroGraphPtr hg,
    const std::vector<IdArray>& nodes,
    const std::vector<int64_t>& k,
    EdgeDir dir,
    const std::vector<FloatArray>& weight,
    bool ascending) {
  // sanity check
  CHECK_EQ(nodes.size(), hg->NumVertexTypes())
    << "Number of node ID tensors must match the number of node types.";
  CHECK_EQ(k.size(), hg->NumEdgeTypes())
    << "Number of k values must match the number of edge types.";
  CHECK_EQ(weight.size(), hg->NumEdgeTypes())
    << "Number of weight tensors must match the number of edge types.";

  std::vector<HeteroGraphPtr> subrels(hg->NumEdgeTypes());
  std::vector<IdArray> induced_edges(hg->NumEdgeTypes());
  for (dgl_type_t etype = 0; etype < hg->NumEdgeTypes(); ++etype) {
    auto pair = hg->meta_graph()->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    const IdArray nodes_ntype = nodes[(dir == EdgeDir::kOut)? src_vtype : dst_vtype];
    const int64_t num_nodes = nodes_ntype->shape[0];
    if (num_nodes == 0) {
      // No node provided in the type, create a placeholder relation graph
      subrels[etype] = UnitGraph::Empty(
        hg->GetRelationGraph(etype)->NumVertexTypes(),
        hg->NumVertices(src_vtype),
        hg->NumVertices(dst_vtype),
        hg->DataType(), hg->Context());
      induced_edges[etype] = IdArray::Empty({0}, hg->DataType(), hg->Context());
    } else {
      // sample from one relation graph
      auto req_fmt = (dir == EdgeDir::kOut)? SparseFormat::CSR : SparseFormat::CSC;
      auto avail_fmt = hg->SelectFormat(etype, req_fmt);
      COOMatrix sampled_coo;
      switch (avail_fmt) {
        case SparseFormat::COO:
          if (dir == EdgeDir::kIn) {
            sampled_coo = aten::COOTranspose(aten::COORowWiseTopk(
              aten::COOTranspose(hg->GetCOOMatrix(etype)),
              nodes_ntype, k[etype], weight[etype], ascending));
          } else {
            sampled_coo = aten::COORowWiseTopk(
              hg->GetCOOMatrix(etype), nodes_ntype, k[etype], weight[etype], ascending);
          }
          break;
        case SparseFormat::CSR:
          CHECK(dir == EdgeDir::kOut) << "Cannot sample out edges on CSC matrix.";
          sampled_coo = aten::CSRRowWiseTopk(
            hg->GetCSRMatrix(etype), nodes_ntype, k[etype], weight[etype], ascending);
          break;
        case SparseFormat::CSC:
          CHECK(dir == EdgeDir::kIn) << "Cannot sample in edges on CSR matrix.";
          sampled_coo = aten::CSRRowWiseTopk(
            hg->GetCSCMatrix(etype), nodes_ntype, k[etype], weight[etype], ascending);
          sampled_coo = aten::COOTranspose(sampled_coo);
          break;
        default:
          LOG(FATAL) << "Unsupported sparse format.";
      }
      subrels[etype] = UnitGraph::CreateFromCOO(
        hg->GetRelationGraph(etype)->NumVertexTypes(), sampled_coo);
      if (sampled_coo.data.defined()) {
        induced_edges[etype] = sampled_coo.data;
      } else {
        induced_edges[etype] = IdArray::Empty({0}, hg->DataType(), hg->Context());
      }
    }
  }

  HeteroSubgraph ret;
  ret.graph = CreateHeteroGraph(hg->meta_graph(), subrels);
  ret.induced_vertices.resize(hg->NumVertexTypes());
  ret.induced_edges = std::move(induced_edges);
  return ret;
}

DGL_REGISTER_GLOBAL("sampling.neighbor._CAPI_DGLSampleNeighbors")
.set_body([] (DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef hg = args[0];
    const auto& nodes = ListValueToVector<IdArray>(args[1]);
    const auto& fanouts = ListValueToVector<int64_t>(args[2]);
    const std::string dir_str = args[3];
    const auto& prob = ListValueToVector<FloatArray>(args[4]);
    const bool replace = args[5];

    CHECK(dir_str == "in" || dir_str == "out")
      << "Invalid edge direction. Must be \"in\" or \"out\".";
    EdgeDir dir = (dir_str == "in")? EdgeDir::kIn : EdgeDir::kOut;

    std::shared_ptr<HeteroSubgraph> subg(new HeteroSubgraph);
    *subg = sampling::SampleNeighbors(
        hg.sptr(), nodes, fanouts, dir, prob, replace);

    *rv = HeteroSubgraphRef(subg);
  });

DGL_REGISTER_GLOBAL("sampling.neighbor._CAPI_DGLSampleNeighborsTopk")
.set_body([] (DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef hg = args[0];
    const auto& nodes = ListValueToVector<IdArray>(args[1]);
    const auto& k = ListValueToVector<int64_t>(args[2]);
    const std::string dir_str = args[3];
    const auto& weight = ListValueToVector<FloatArray>(args[4]);
    const bool ascending = args[5];

  CHECK(dir_str == "in" || dir_str == "out")
    << "Invalid edge direction. Must be \"in\" or \"out\".";
    EdgeDir dir = (dir_str == "in")? EdgeDir::kIn : EdgeDir::kOut;

    std::shared_ptr<HeteroSubgraph> subg(new HeteroSubgraph);
    *subg = sampling::SampleNeighborsTopk(
        hg.sptr(), nodes, k, dir, weight, ascending);

    *rv = HeteroGraphRef(subg);
  });

}  // namespace sampling
}  // namespace dgl