KGDataset.py 22.9 KB
Newer Older
1
import os
2
import numpy as np
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

def _download_and_extract(url, path, filename):
    import shutil, zipfile
    import requests

    fn = os.path.join(path, filename)

    while True:
        try:
            with zipfile.ZipFile(fn) as zf:
                zf.extractall(path)
            print('Unzip finished.')
            break
        except Exception:
            os.makedirs(path, exist_ok=True)
            f_remote = requests.get(url, stream=True)
            sz = f_remote.headers.get('content-length')
            assert f_remote.status_code == 200, 'fail to open {}'.format(url)
            with open(fn, 'wb') as writer:
Da Zheng's avatar
Da Zheng committed
22
                for chunk in f_remote.iter_content(chunk_size=1024*1024):
23
24
25
                    writer.write(chunk)
            print('Download finished. Unzipping the file...')

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def _get_id(dict, key):
    id = dict.get(key, None)
    if id is None:
        id = len(dict)
        dict[key] = id
    return id

def _parse_srd_format(format):
    if format == "hrt":
        return [0, 1, 2]
    if format == "htr":
        return [0, 2, 1]
    if format == "rht":
        return [1, 0, 2]
    if format == "rth":
        return [2, 0, 1]
    if format == "thr":
        return [1, 2, 0]
    if format == "trh":
        return [2, 1, 0]

47
48
49
50
51
52
def _file_line(path):
    with open(path) as f:
        for i, l in enumerate(f):
            pass
    return i + 1

53
54
55
56
57
58
59
60
61
class KGDataset:
    '''Load a knowledge graph

    The folder with a knowledge graph has five files:
    * entities stores the mapping between entity Id and entity name.
    * relations stores the mapping between relation Id and relation name.
    * train stores the triples in the training set.
    * valid stores the triples in the validation set.
    * test stores the triples in the test set.
62
63
64
65
66

    The mapping between entity (relation) Id and entity (relation) name is stored as 'id\tname'.

    The triples are stored as 'head_name\trelation_name\ttail_name'.
    '''
67
68
69
    def __init__(self, entity_path, relation_path, train_path, 
                 valid_path=None, test_path=None, format=[0,1,2], skip_first_line=False):

70
71
        self.entity2id, self.n_entities = self.read_entity(entity_path)
        self.relation2id, self.n_relations = self.read_relation(relation_path)
72
73
74
75
76
        self.train = self.read_triple(train_path, "train", skip_first_line, format)
        if valid_path is not None:
            self.valid = self.read_triple(valid_path, "valid", skip_first_line, format)
        if test_path is not None:
            self.test = self.read_triple(test_path, "test", skip_first_line, format)
77

78
79
    def read_entity(self, entity_path):
        with open(entity_path) as f:
80
81
82
83
84
            entity2id = {}
            for line in f:
                eid, entity = line.strip().split('\t')
                entity2id[entity] = int(eid)

85
        return entity2id, len(entity2id)
86

87
88
    def read_relation(self, relation_path):
        with open(relation_path) as f:
89
90
91
92
93
            relation2id = {}
            for line in f:
                rid, relation = line.strip().split('\t')
                relation2id[relation] = int(rid)

94
        return relation2id, len(relation2id)
95

96
    def read_triple(self, path, mode, skip_first_line=False, format=[0,1,2]):
97
        # mode: train/valid/test
98
99
100
        if path is None:
            return None

101
        print('Reading {} triples....'.format(mode))
102
103
104
        heads = []
        tails = []
        rels = []
105
106
107
        with open(path) as f:
            if skip_first_line:
                _ = f.readline()
108
            for line in f:
109
110
                triple = line.strip().split('\t')
                h, r, t = triple[format[0]], triple[format[1]], triple[format[2]]
111
112
113
                heads.append(self.entity2id[h])
                rels.append(self.relation2id[r])
                tails.append(self.entity2id[t])
114

115
116
117
        heads = np.array(heads, dtype=np.int64)
        tails = np.array(tails, dtype=np.int64)
        rels = np.array(rels, dtype=np.int64)
118
        print('Finished. Read {} {} triples.'.format(len(heads), mode))
119

120
        return (heads, rels, tails)
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

class PartitionKGDataset():
    '''Load a partitioned knowledge graph

    The folder with a partitioned knowledge graph has four files:
    * relations stores the mapping between relation Id and relation name.
    * train stores the triples in the training set.
    * local_to_global stores the mapping of local id and global id
    * partition_book stores the machine id of each entity

    The triples are stored as 'head_id\relation_id\tail_id'.
    '''
    def __init__(self, relation_path, train_path, local2global_path, 
                 read_triple=True, skip_first_line=False):
        self.n_entities = _file_line(local2global_path)
        if skip_first_line == False:
            self.n_relations = _file_line(relation_path)
        else:
            self.n_relations = _file_line(relation_path) - 1
        if read_triple == True:
            self.train = self.read_triple(train_path, "train")

    def read_triple(self, path, mode):
        heads = []
        tails = []
        rels = []
        print('Reading {} triples....'.format(mode))
        with open(path) as f:
            for line in f:
                h, r, t = line.strip().split('\t')
                heads.append(int(h))
                rels.append(int(r))
                tails.append(int(t))

        heads = np.array(heads, dtype=np.int64)
        tails = np.array(tails, dtype=np.int64)
        rels = np.array(rels, dtype=np.int64)
        print('Finished. Read {} {} triples.'.format(len(heads), mode))

        return (heads, rels, tails)


164
165
166
167
168
169
170
171
172
173
174
175
176
class KGDatasetFB15k(KGDataset):
    '''Load a knowledge graph FB15k

    The FB15k dataset has five files:
    * entities.dict stores the mapping between entity Id and entity name.
    * relations.dict stores the mapping between relation Id and relation name.
    * train.txt stores the triples in the training set.
    * valid.txt stores the triples in the validation set.
    * test.txt stores the triples in the test set.

    The mapping between entity (relation) name and entity (relation) Id is stored as 'name\tid'.
    The triples are stored as 'head_nid\trelation_id\ttail_nid'.
    '''
177
    def __init__(self, path, name='FB15k'):
178
179
180
181
182
183
184
185
186
187
188
189
        self.name = name
        url = 'https://data.dgl.ai/dataset/{}.zip'.format(name)

        if not os.path.exists(os.path.join(path, name)):
            print('File not found. Downloading from', url)
            _download_and_extract(url, path, name + '.zip')
        self.path = os.path.join(path, name)

        super(KGDatasetFB15k, self).__init__(os.path.join(self.path, 'entities.dict'),
                                             os.path.join(self.path, 'relations.dict'),
                                             os.path.join(self.path, 'train.txt'),
                                             os.path.join(self.path, 'valid.txt'),
190
191
                                             os.path.join(self.path, 'test.txt'))

192

193
194
195
196
197
198
199
200
201
class KGDatasetFB15k237(KGDataset):
    '''Load a knowledge graph FB15k-237

    The FB15k-237 dataset has five files:
    * entities.dict stores the mapping between entity Id and entity name.
    * relations.dict stores the mapping between relation Id and relation name.
    * train.txt stores the triples in the training set.
    * valid.txt stores the triples in the validation set.
    * test.txt stores the triples in the test set.
202

203
204
205
    The mapping between entity (relation) name and entity (relation) Id is stored as 'name\tid'.
    The triples are stored as 'head_nid\trelation_id\ttail_nid'.
    '''
206
    def __init__(self, path, name='FB15k-237'):
207
208
209
210
211
212
213
214
215
216
217
218
        self.name = name
        url = 'https://data.dgl.ai/dataset/{}.zip'.format(name)

        if not os.path.exists(os.path.join(path, name)):
            print('File not found. Downloading from', url)
            _download_and_extract(url, path, name + '.zip')
        self.path = os.path.join(path, name)

        super(KGDatasetFB15k237, self).__init__(os.path.join(self.path, 'entities.dict'),
                                                os.path.join(self.path, 'relations.dict'),
                                                os.path.join(self.path, 'train.txt'),
                                                os.path.join(self.path, 'valid.txt'),
219
220
                                                os.path.join(self.path, 'test.txt'))

221
222
223
224
225
226
227
228
229
230
231
232
233
234

class KGDatasetWN18(KGDataset):
    '''Load a knowledge graph wn18

    The wn18 dataset has five files:
    * entities.dict stores the mapping between entity Id and entity name.
    * relations.dict stores the mapping between relation Id and relation name.
    * train.txt stores the triples in the training set.
    * valid.txt stores the triples in the validation set.
    * test.txt stores the triples in the test set.

    The mapping between entity (relation) name and entity (relation) Id is stored as 'name\tid'.
    The triples are stored as 'head_nid\trelation_id\ttail_nid'.
    '''
235
    def __init__(self, path, name='wn18'):
236
237
238
239
240
241
242
243
244
245
246
247
        self.name = name
        url = 'https://data.dgl.ai/dataset/{}.zip'.format(name)

        if not os.path.exists(os.path.join(path, name)):
            print('File not found. Downloading from', url)
            _download_and_extract(url, path, name + '.zip')
        self.path = os.path.join(path, name)

        super(KGDatasetWN18, self).__init__(os.path.join(self.path, 'entities.dict'),
                                            os.path.join(self.path, 'relations.dict'),
                                            os.path.join(self.path, 'train.txt'),
                                            os.path.join(self.path, 'valid.txt'),
248
249
                                            os.path.join(self.path, 'test.txt'))

250
251
252
253
254
255
256
257
258
259
260
261
262
263

class KGDatasetWN18rr(KGDataset):
    '''Load a knowledge graph wn18rr

    The wn18rr dataset has five files:
    * entities.dict stores the mapping between entity Id and entity name.
    * relations.dict stores the mapping between relation Id and relation name.
    * train.txt stores the triples in the training set.
    * valid.txt stores the triples in the validation set.
    * test.txt stores the triples in the test set.

    The mapping between entity (relation) name and entity (relation) Id is stored as 'name\tid'.
    The triples are stored as 'head_nid\trelation_id\ttail_nid'.
    '''
264
    def __init__(self, path, name='wn18rr'):
265
266
267
268
269
270
271
272
273
274
275
276
        self.name = name
        url = 'https://data.dgl.ai/dataset/{}.zip'.format(name)

        if not os.path.exists(os.path.join(path, name)):
            print('File not found. Downloading from', url)
            _download_and_extract(url, path, name + '.zip')
        self.path = os.path.join(path, name)

        super(KGDatasetWN18rr, self).__init__(os.path.join(self.path, 'entities.dict'),
                                              os.path.join(self.path, 'relations.dict'),
                                              os.path.join(self.path, 'train.txt'),
                                              os.path.join(self.path, 'valid.txt'),
277
                                              os.path.join(self.path, 'test.txt'))
278
279
280
281
282

class KGDatasetFreebase(KGDataset):
    '''Load a knowledge graph Full Freebase

    The Freebase dataset has five files:
283
284
285
286
287
288
289
290
291
    * entity2id.txt stores the mapping between entity name and entity Id.
    * relation2id.txt stores the mapping between relation name relation Id.
    * train.txt stores the triples in the training set.
    * valid.txt stores the triples in the validation set.
    * test.txt stores the triples in the test set.

    The mapping between entity (relation) name and entity (relation) Id is stored as 'name\tid'.
    The triples are stored as 'head_nid\trelation_id\ttail_nid'.
    '''
292
    def __init__(self, path, name='Freebase'):
293
        self.name = name
Jinjing Zhou's avatar
Jinjing Zhou committed
294
        url = 'https://data.dgl.ai/dataset/{}.zip'.format(name)
295
296
297
298
299
300

        if not os.path.exists(os.path.join(path, name)):
            print('File not found. Downloading from', url)
            _download_and_extract(url, path, '{}.zip'.format(name))
        self.path = os.path.join(path, name)

301
302
303
304
        super(KGDatasetFreebase, self).__init__(os.path.join(self.path, 'entity2id.txt'),
                                                os.path.join(self.path, 'relation2id.txt'),
                                                os.path.join(self.path, 'train.txt'),
                                                os.path.join(self.path, 'valid.txt'),
305
                                                os.path.join(self.path, 'test.txt'))
306

307
308
309
310
    def read_entity(self, entity_path):
        with open(entity_path) as f_ent:
            n_entities = int(f_ent.readline()[:-1])
        return None, n_entities
311

312
313
314
315
    def read_relation(self, relation_path):
        with open(relation_path) as f_rel:
            n_relations = int(f_rel.readline()[:-1])
        return None, n_relations
316

317
    def read_triple(self, path, mode, skip_first_line=False, format=None):
318
319
320
        heads = []
        tails = []
        rels = []
321
        print('Reading {} triples....'.format(mode))
322
        with open(path) as f:
323
324
325
326
            if skip_first_line:
                _ = f.readline()
            for line in f:
                h, t, r = line.strip().split('\t')
327
328
329
                heads.append(int(h))
                tails.append(int(t))
                rels.append(int(r))
330

331
332
333
334
335
        heads = np.array(heads, dtype=np.int64)
        tails = np.array(tails, dtype=np.int64)
        rels = np.array(rels, dtype=np.int64)
        print('Finished. Read {} {} triples.'.format(len(heads), mode))
        return (heads, rels, tails)
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
class KGDatasetUDDRaw(KGDataset):
    '''Load a knowledge graph user defined dataset

    The user defined dataset has five files:
    * entities stores the mapping between entity name and entity Id.
    * relations stores the mapping between relation name relation Id.
    * train stores the triples in the training set. In format [src_name, rel_name, dst_name]
    * valid stores the triples in the validation set. In format [src_name, rel_name, dst_name]
    * test stores the triples in the test set. In format [src_name, rel_name, dst_name]

    The mapping between entity (relation) name and entity (relation) Id is stored as 'name\tid'.
    The triples are stored as 'head_nid\trelation_id\ttail_nid'.
    '''
    def __init__(self, path, name, files, format):
        self.name = name
        for f in files:
            assert os.path.exists(os.path.join(path, f)), \
                'File {} now exist in {}'.format(f, path)

        assert len(format) == 3
        format = _parse_srd_format(format)
        self.load_entity_relation(path, files, format)

        # Only train set is provided
        if len(files) == 1:
            super(KGDatasetUDDRaw, self).__init__("entities.tsv",
                                                  "relation.tsv",
                                                  os.path.join(path, files[0]),
365
                                                  format=format)
366
367
368
369
370
371
372
        # Train, validation and test set are provided
        if len(files) == 3:
            super(KGDatasetUDDRaw, self).__init__("entities.tsv",
                                                  "relation.tsv",
                                                  os.path.join(path, files[0]),
                                                  os.path.join(path, files[1]),
                                                  os.path.join(path, files[2]),
373
                                                  format=format)
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

    def load_entity_relation(self, path, files, format):
        entity_map = {}
        rel_map = {}
        for fi in files:
            with open(os.path.join(path, fi)) as f:
                for line in f:
                    triple = line.strip().split('\t')
                    src, rel, dst = triple[format[0]], triple[format[1]], triple[format[2]]
                    src_id = _get_id(entity_map, src)
                    dst_id = _get_id(entity_map, dst)
                    rel_id = _get_id(rel_map, rel)

        entities = ["{}\t{}\n".format(key, val) for key, val in entity_map.items()]
        with open(os.path.join(path, "entities.tsv"), "w+") as f:
            f.writelines(entities)
        self.entity2id = entity_map
        self.n_entities = len(entities)

        relations = ["{}\t{}\n".format(key, val) for key, val in rel_map.items()]
        with open(os.path.join(path, "relations.tsv"), "w+") as f:
            f.writelines(relations)
        self.relation2id = rel_map
        self.n_relations = len(relations)

    def read_entity(self, entity_path):
        return self.entity2id, self.n_entities
    
    def read_relation(self, relation_path):
        return self.relation2id, self.n_relations

class KGDatasetUDD(KGDataset):
    '''Load a knowledge graph user defined dataset

    The user defined dataset has five files:
    * entities stores the mapping between entity name and entity Id.
    * relations stores the mapping between relation name relation Id.
    * train stores the triples in the training set. In format [src_id, rel_id, dst_id]
    * valid stores the triples in the validation set. In format [src_id, rel_id, dst_id]
    * test stores the triples in the test set. In format [src_id, rel_id, dst_id]

    The mapping between entity (relation) name and entity (relation) Id is stored as 'name\tid'.
    The triples are stored as 'head_nid\trelation_id\ttail_nid'.
    '''
418
    def __init__(self, path, name, files, format):
419
420
421
422
423
424
425
426
427
428
        self.name = name
        for f in files:
            assert os.path.exists(os.path.join(path, f)), \
                'File {} now exist in {}'.format(f, path)

        format = _parse_srd_format(format)
        if len(files) == 3:
            super(KGDatasetUDD, self).__init__(os.path.join(path, files[0]),
                                               os.path.join(path, files[1]),
                                               os.path.join(path, files[2]),
Da Zheng's avatar
Da Zheng committed
429
                                               None, None,
430
                                               format=format)
431
432
433
434
435
436
        if len(files) == 5:
            super(KGDatasetUDD, self).__init__(os.path.join(path, files[0]),
                                               os.path.join(path, files[1]),
                                               os.path.join(path, files[2]),
                                               os.path.join(path, files[3]),
                                               os.path.join(path, files[4]),
437
                                               format=format)
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

    def read_entity(self, entity_path):
        n_entities = 0
        with open(entity_path) as f_ent:
            for line in f_ent:
                n_entities += 1
        return None, n_entities

    def read_relation(self, relation_path):
        n_relations = 0
        with open(relation_path) as f_rel:
            for line in f_rel:
                n_relations += 1
        return None, n_relations

    def read_triple(self, path, mode, skip_first_line=False, format=[0,1,2]):
        heads = []
        tails = []
        rels = []
        print('Reading {} triples....'.format(mode))
        with open(path) as f:
            if skip_first_line:
                _ = f.readline()
            for line in f:
                triple = line.strip().split('\t')
                h, r, t = triple[format[0]], triple[format[1]], triple[format[2]]
                heads.append(int(h))
                tails.append(int(t))
                rels.append(int(r))
        heads = np.array(heads, dtype=np.int64)
        tails = np.array(tails, dtype=np.int64)
        rels = np.array(rels, dtype=np.int64)
        print('Finished. Read {} {} triples.'.format(len(heads), mode))
        return (heads, rels, tails)
472

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def get_dataset(data_path, data_name, format_str, files=None):
    if format_str == 'built_in':
        if data_name == 'Freebase':
            dataset = KGDatasetFreebase(data_path)
        elif data_name == 'FB15k':
            dataset = KGDatasetFB15k(data_path)
        elif data_name == 'FB15k-237':
            dataset = KGDatasetFB15k237(data_path)
        elif data_name == 'wn18':
            dataset = KGDatasetWN18(data_path)
        elif data_name == 'wn18rr':
            dataset = KGDatasetWN18rr(data_path)
        else: 
            assert False, "Unknown dataset {}".format(data_name)
    elif format_str.startswith('raw_udd'):
        # user defined dataset
        format = format_str[8:]
        dataset = KGDatasetUDDRaw(data_path, data_name, files, format)
    elif format_str.startswith('udd'):
        # user defined dataset
        format = format_str[4:]
        dataset = KGDatasetUDD(data_path, data_name, files, format)
495
    else:
496
        assert False, "Unknown format {}".format(format_str)
497
498

    return dataset
499
500


501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
def get_partition_dataset(data_path, data_name, part_id):
    part_name = os.path.join(data_name, 'partition_'+str(part_id))
    path = os.path.join(data_path, part_name)

    if not os.path.exists(path):
        print('Partition file not found.')
        exit()

    train_path = os.path.join(path, 'train.txt')
    local2global_path = os.path.join(path, 'local_to_global.txt')
    partition_book_path = os.path.join(path, 'partition_book.txt')

    if data_name == 'Freebase':
        relation_path = os.path.join(path, 'relation2id.txt')
        skip_first_line = True
516
    else:
517
518
        relation_path = os.path.join(path, 'relations.dict')
        skip_first_line = False
519

520
521
522
523
524
    dataset = PartitionKGDataset(relation_path, 
                                 train_path, 
                                 local2global_path, 
                                 read_triple=True, 
                                 skip_first_line=skip_first_line)
525
526

    partition_book = []
527
    with open(partition_book_path) as f:
528
529
530
531
        for line in f:
            partition_book.append(int(line))

    local_to_global = []
532
    with open(local2global_path) as f:
533
534
535
536
537
538
        for line in f:
            local_to_global.append(int(line))

    return dataset, partition_book, local_to_global


539
540
541
542
543
544
545
546
547
548
549
550
551
552
def get_server_partition_dataset(data_path, data_name, part_id):
    part_name = os.path.join(data_name, 'partition_'+str(part_id))
    path = os.path.join(data_path, part_name)

    if not os.path.exists(path):
        print('Partition file not found.')
        exit()

    train_path = os.path.join(path, 'train.txt')
    local2global_path = os.path.join(path, 'local_to_global.txt')    

    if data_name == 'Freebase':
        relation_path = os.path.join(path, 'relation2id.txt')
        skip_first_line = True
553
    else:
554
555
        relation_path = os.path.join(path, 'relations.dict')
        skip_first_line = False
556

557
558
559
560
561
    dataset = PartitionKGDataset(relation_path,
                                 train_path,
                                 local2global_path,
                                 read_triple=False,
                                 skip_first_line=skip_first_line)
562

563
    n_entities = _file_line(os.path.join(path, 'partition_book.txt'))
564
565

    local_to_global = []
566
    with open(local2global_path) as f:
567
568
569
570
571
572
573
574
575
576
577
        for line in f:
            local_to_global.append(int(line))

    global_to_local = [0] * n_entities
    for i in range(len(local_to_global)):
        global_id = local_to_global[i]
        global_to_local[global_id] = i

    local_to_global = None

    return global_to_local, dataset