client.py 1.34 KB
Newer Older
1
# This is a simple MXNet server demo shows how to use DGL distributed kvstore.
Chao Ma's avatar
Chao Ma committed
2
3
import dgl
import argparse
4
import mxnet as mx
Chao Ma's avatar
Chao Ma committed
5

6
7
8
9
10
ID = []
ID.append(mx.nd.array([0,1], dtype='int64'))
ID.append(mx.nd.array([2,3], dtype='int64'))
ID.append(mx.nd.array([4,5], dtype='int64'))
ID.append(mx.nd.array([6,7], dtype='int64'))
Chao Ma's avatar
Chao Ma committed
11

12
13
edata_partition_book = {'edata':mx.nd.array([0,0,1,1,2,2,3,3], dtype='int64')}
ndata_partition_book = {'ndata':mx.nd.array([0,0,1,1,2,2,3,3], dtype='int64')}
Chao Ma's avatar
Chao Ma committed
14

15
16
17
18
19
def start_client():
    
    client = dgl.contrib.start_client(ip_config='ip_config.txt', 
                                      ndata_partition_book=ndata_partition_book, 
                                      edata_partition_book=edata_partition_book)
Chao Ma's avatar
Chao Ma committed
20

21
22
    client.push(name='edata', id_tensor=ID[client.get_id()], data_tensor=mx.nd.array([[1.,1.,1.],[1.,1.,1.]]))
    client.push(name='ndata', id_tensor=ID[client.get_id()], data_tensor=mx.nd.array([[2.,2.,2.],[2.,2.,2.]]))
Chao Ma's avatar
Chao Ma committed
23

24
    client.barrier()
Chao Ma's avatar
Chao Ma committed
25

26
27
    tensor_edata = client.pull(name='edata', id_tensor=mx.nd.array([0,1,2,3,4,5,6,7], dtype='int64'))
    tensor_ndata = client.pull(name='ndata', id_tensor=mx.nd.array([0,1,2,3,4,5,6,7], dtype='int64'))
Chao Ma's avatar
Chao Ma committed
28

29
    print(tensor_edata)
Chao Ma's avatar
Chao Ma committed
30

31
    client.barrier()
Chao Ma's avatar
Chao Ma committed
32

33
    print(tensor_ndata)
Chao Ma's avatar
Chao Ma committed
34

35
    client.barrier()
Chao Ma's avatar
Chao Ma committed
36

Chao Ma's avatar
Chao Ma committed
37
38
39
40
    if client.get_id() == 0:
        client.shut_down()

if __name__ == '__main__':
41
42

    start_client()