test_convert_partition.py 7.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import tempfile

import numpy as np
import pytest

import utils

from convert_partition import _get_unique_invidx


@pytest.mark.parametrize(
    "num_nodes, num_edges, nid_begin, nid_end",
    [
        [4000, 40000, 0, 1000],
        [4000, 40000, 1000, 2000],
        [4000, 40000, 2000, 3000],
        [4000, 40000, 3000, 4000],
        [4000, 100, 0, 1000],
        [4000, 100, 1000, 2000],
        [4000, 100, 2000, 3000],
        [4000, 100, 3000, 4000],
        [1, 1, 0, 1],
    ],
)
def test_get_unique_invidx_with_numpy(num_nodes, num_edges, nid_begin, nid_end):
    # prepare data for the function
    # generate synthetic edges
    if num_edges > 0:
        srcids = np.random.randint(0, num_nodes, (num_edges,))  # exclusive
        dstids = np.random.randint(
            nid_begin, nid_end, (num_edges,)
        )  # exclusive
    else:
        srcids = np.array([])
        dstids = np.array([])

    assert nid_begin <= nid_end

    # generate unique node-ids for any
    # partition. This list should be sorted.
    # This is equivilant to shuffle_nids in a partition
    unique_nids = np.arange(nid_begin, nid_end)  # exclusive

    # test with numpy unique here
    orig_srcids = srcids.copy()
    orig_dstids = dstids.copy()
    input_arr = np.concatenate([srcids, dstids, unique_nids])

    # test
    uniques, idxes, srcids, dstids = _get_unique_invidx(
        srcids, dstids, unique_nids
    )

    assert len(uniques) == len(idxes)
    assert np.all(srcids < len(uniques))
    assert np.all(dstids < len(uniques))
    assert np.all(uniques[srcids].sort() == orig_srcids.sort())
    assert np.all(uniques[dstids] == orig_dstids)

    assert np.all(uniques == input_arr[idxes])

    # numpy
    np_uniques, np_idxes, np_inv_idxes = np.unique(
        np.concatenate([orig_srcids, orig_dstids, unique_nids]),
        return_index=True,
        return_inverse=True,
    )

    # test uniques
    assert np.all(np_uniques == uniques)

    # test idxes array
    assert np.all(input_arr[idxes].sort() == input_arr[np_idxes].sort())

    # test srcids, inv_indices
    assert np.all(
        uniques[srcids].sort()
        == np_uniques[np_inv_idxes[0 : len(srcids)]].sort()
    )

    # test dstids, inv_indices
    assert np.all(
        uniques[dstids].sort() == np_uniques[np_inv_idxes[len(srcids) :]].sort()
    )


@pytest.mark.parametrize(
    "num_nodes, num_edges, nid_begin, nid_end",
    [
        # dense networks, no. of edges more than no. of nodes
        [4000, 40000, 0, 1000],
        [4000, 40000, 1000, 2000],
        [4000, 40000, 2000, 3000],
        [4000, 40000, 3000, 4000],
        # sparse networks, no. of edges smaller than no. of nodes
        [4000, 100, 0, 1000],
        [4000, 100, 1000, 2000],
        [4000, 100, 2000, 3000],
        [4000, 100, 3000, 4000],
        # corner case
        [1, 1, 0, 1],
    ],
)
def test_get_unique_invidx(num_nodes, num_edges, nid_begin, nid_end):
    # prepare data for the function
    # generate synthetic edges
    if num_edges > 0:
        srcids = np.random.randint(0, num_nodes, (num_edges,))
        dstids = np.random.randint(nid_begin, nid_end, (num_edges,))
    else:
        srcids = np.array([])
        dstids = np.array([])

    assert nid_begin <= nid_end

    # generate unique node-ids for any
    # partition. This list should be sorted.
    # This is equivilant to shuffle_nids in a partition
    unique_nids = np.arange(nid_begin, nid_end)

    # invoke the test target
    uniques, idxes, src_ids, dst_ids = _get_unique_invidx(
        srcids, dstids, unique_nids
    )

    # validate the outputs of this function
    # array uniques should be sorted list of integers.
    assert np.all(
        np.diff(uniques) >= 0
    ), f"Output parameter uniques assert failing."

    # idxes are list of integers
    # these are indices in the concatenated list (srcids, dstids, unique_nids)
    max_idx = len(src_ids) + len(dst_ids) + len(unique_nids)
    assert np.all(idxes >= 0), f"Output parameter idxes has negative values."
    assert np.all(
        idxes < max_idx
    ), f"Output parameter idxes has invalid maximum value."

    # srcids and dstids will be inverse indices in the uniques list
    min_src = np.amin(src_ids)
    max_src = np.amax(src_ids)

    min_dst = np.amin(dst_ids)
    max_dst = np.amax(dst_ids)

    assert (
        len(uniques) > max_src
    ), f"Inverse idx, src_ids, has invalid max value."
    assert min_src >= 0, f"Inverse idx, src_ids has negative values."

    assert len(uniques) > max_dst, f"Inverse idx, dst_ids, invalid max value."
    assert max_dst >= 0, f"Inverse idx, dst_ids has negative values."
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251


def test_get_unique_invidx_low_mem():
    srcids = np.array([14, 0, 3, 3, 0, 3, 9, 5, 14, 12])
    dstids = np.array([10, 16, 12, 13, 10, 17, 16, 13, 14, 16])
    unique_nids = np.array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

    uniques, idxes, srcids, dstids = _get_unique_invidx(
        srcids,
        dstids,
        unique_nids,
        low_mem=True,
    )
    expected_unqiues = np.array(
        [0, 3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
    )
    expected_idxes = np.array(
        [1, 2, 7, 6, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
    )
    expected_srcids = np.array([8, 0, 1, 1, 0, 1, 3, 2, 8, 6])
    expected_dstids = np.array([4, 10, 6, 7, 4, 11, 10, 7, 8, 10])
    assert np.all(
        uniques == expected_unqiues
    ), f"unique is not expected. {uniques} != {expected_unqiues}"
    assert np.all(
        idxes == expected_idxes
    ), f"indices is not expected. {idxes} != {expected_idxes}"
    assert np.all(
        srcids == expected_srcids
    ), f"srcids is not expected. {srcids} != {expected_srcids}"
    assert np.all(
        dstids == expected_dstids
    ), f"dstdis is not expected. {dstids} != {expected_dstids}"


def test_get_unique_invidx_high_mem():
    srcids = np.array([14, 0, 3, 3, 0, 3, 9, 5, 14, 12])
    dstids = np.array([10, 16, 12, 13, 10, 17, 16, 13, 14, 16])
    unique_nids = np.array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

    uniques, idxes, srcids, dstids = _get_unique_invidx(
        srcids,
        dstids,
        unique_nids,
        low_mem=False,
    )
    expected_unqiues = np.array(
        [0, 3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
    )
    expected_idxes = np.array(
        [1, 2, 7, 6, 10, 21, 9, 13, 0, 25, 11, 15, 28, 29]
    )
    expected_srcids = np.array([8, 0, 1, 1, 0, 1, 3, 2, 8, 6])
    expected_dstids = np.array([4, 10, 6, 7, 4, 11, 10, 7, 8, 10])
    assert np.all(
        uniques == expected_unqiues
    ), f"unique is not expected. {uniques} != {expected_unqiues}"
    assert np.all(
        idxes == expected_idxes
    ), f"indices is not expected. {idxes} != {expected_idxes}"
    assert np.all(
        srcids == expected_srcids
    ), f"srcids is not expected. {srcids} != {expected_srcids}"
    assert np.all(
        dstids == expected_dstids
    ), f"dstdis is not expected. {dstids} != {expected_dstids}"


def test_get_unique_invidx_low_high_mem():
    srcids = np.array([14, 0, 3, 3, 0, 3, 9, 5, 14, 12])
    dstids = np.array([10, 16, 12, 13, 10, 17, 16, 13, 14, 16])
    unique_nids = np.array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

    uniques_low, idxes_low, srcids_low, dstids_low = _get_unique_invidx(
        srcids,
        dstids,
        unique_nids,
        low_mem=True,
    )
    uniques_high, idxes_high, srcids_high, dstids_high = _get_unique_invidx(
        srcids,
        dstids,
        unique_nids,
        low_mem=False,
    )
    assert np.all(
        uniques_low == uniques_high
    ), f"unique is not expected. {uniques_low} != {uniques_high}"
    assert not np.all(
        idxes_low == idxes_high
    ), f"indices is not expected. {idxes_low} == {idxes_high}"
    assert np.all(
        srcids_low == srcids_high
    ), f"srcids is not expected. {srcids_low} != {srcids_high}"
    assert np.all(
        dstids_low == dstids_high
    ), f"dstdis is not expected. {dstids_low} != {dstids_high}"