array_op_impl.cu 13 KB
Newer Older
1
/*!
2
 *  Copyright (c) 2020 by Contributors
3
4
5
6
7
 * \file array/cuda/array_op_impl.cu
 * \brief Array operator GPU implementation
 */
#include <dgl/array.h>
#include "../../runtime/cuda/cuda_common.h"
8
#include "./utils.h"
9
#include "../arith.h"
10
11
12
13
14
15

namespace dgl {
using runtime::NDArray;
namespace aten {
namespace impl {

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
///////////////////////////// BinaryElewise /////////////////////////////

template <typename IdType, typename Op>
__global__ void _BinaryElewiseKernel(
    const IdType* lhs, const IdType* rhs, IdType* out, int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = Op::Call(lhs[tx], rhs[tx]);
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdArray rhs) {
  const int64_t len = lhs->shape[0];
  IdArray ret = NewIdArray(lhs->shape[0], lhs->ctx, lhs->dtype.bits);
  const IdType* lhs_data = static_cast<IdType*>(lhs->data);
  const IdType* rhs_data = static_cast<IdType*>(rhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(len);
  int nb = (len + nt - 1) / nt;
  _BinaryElewiseKernel<IdType, Op><<<nb, nt, 0, thr_entry->stream>>>(
      lhs_data, rhs_data, ret_data, len);
  return ret;
}

template IdArray BinaryElewise<kDLGPU, int32_t, arith::Add>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Sub>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mul>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Div>(IdArray lhs, IdArray rhs);
48
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mod>(IdArray lhs, IdArray rhs);
49
50
51
52
53
54
55
56
57
58
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GT>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LT>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::EQ>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::NE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Add>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Sub>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mul>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Div>(IdArray lhs, IdArray rhs);
59
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mod>(IdArray lhs, IdArray rhs);
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GT>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LT>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LE>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::EQ>(IdArray lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::NE>(IdArray lhs, IdArray rhs);


template <typename IdType, typename Op>
__global__ void _BinaryElewiseKernel(
    const IdType* lhs, IdType rhs, IdType* out, int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = Op::Call(lhs[tx], rhs);
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdType rhs) {
  const int64_t len = lhs->shape[0];
  IdArray ret = NewIdArray(lhs->shape[0], lhs->ctx, lhs->dtype.bits);
  const IdType* lhs_data = static_cast<IdType*>(lhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(len);
  int nb = (len + nt - 1) / nt;
  _BinaryElewiseKernel<IdType, Op><<<nb, nt, 0, thr_entry->stream>>>(
      lhs_data, rhs, ret_data, len);
  return ret;
}

template IdArray BinaryElewise<kDLGPU, int32_t, arith::Add>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Sub>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mul>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Div>(IdArray lhs, int32_t rhs);
97
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mod>(IdArray lhs, int32_t rhs);
98
99
100
101
102
103
104
105
106
107
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GT>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LT>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GE>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LE>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::EQ>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::NE>(IdArray lhs, int32_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Add>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Sub>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mul>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Div>(IdArray lhs, int64_t rhs);
108
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mod>(IdArray lhs, int64_t rhs);
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GT>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LT>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GE>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LE>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::EQ>(IdArray lhs, int64_t rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::NE>(IdArray lhs, int64_t rhs);



template <typename IdType, typename Op>
__global__ void _BinaryElewiseKernel(
    IdType lhs, const IdType* rhs, IdType* out, int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = Op::Call(lhs, rhs[tx]);
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdType lhs, IdArray rhs) {
  const int64_t len = rhs->shape[0];
  IdArray ret = NewIdArray(rhs->shape[0], rhs->ctx, rhs->dtype.bits);
  const IdType* rhs_data = static_cast<IdType*>(rhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(len);
  int nb = (len + nt - 1) / nt;
  _BinaryElewiseKernel<IdType, Op><<<nb, nt, 0, thr_entry->stream>>>(
      lhs, rhs_data, ret_data, len);
  return ret;
}

template IdArray BinaryElewise<kDLGPU, int32_t, arith::Add>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Sub>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mul>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Div>(int32_t lhs, IdArray rhs);
147
template IdArray BinaryElewise<kDLGPU, int32_t, arith::Mod>(int32_t lhs, IdArray rhs);
148
149
150
151
152
153
154
155
156
157
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GT>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LT>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::GE>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::LE>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::EQ>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int32_t, arith::NE>(int32_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Add>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Sub>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mul>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Div>(int64_t lhs, IdArray rhs);
158
template IdArray BinaryElewise<kDLGPU, int64_t, arith::Mod>(int64_t lhs, IdArray rhs);
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GT>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LT>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::GE>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::LE>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::EQ>(int64_t lhs, IdArray rhs);
template IdArray BinaryElewise<kDLGPU, int64_t, arith::NE>(int64_t lhs, IdArray rhs);

template <typename IdType, typename Op>
__global__ void _UnaryElewiseKernel(
    const IdType* lhs, IdType* out, int64_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = Op::Call(lhs[tx]);
    tx += stride_x;
174
  }
175
176
177
178
179
180
181
182
183
184
185
186
187
}

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray UnaryElewise(IdArray lhs) {
  const int64_t len = lhs->shape[0];
  IdArray ret = NewIdArray(lhs->shape[0], lhs->ctx, lhs->dtype.bits);
  const IdType* lhs_data = static_cast<IdType*>(lhs->data);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(len);
  int nb = (len + nt - 1) / nt;
  _UnaryElewiseKernel<IdType, Op><<<nb, nt, 0, thr_entry->stream>>>(
      lhs_data, ret_data, len);
188
189
190
  return ret;
}

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
template IdArray UnaryElewise<kDLGPU, int32_t, arith::Neg>(IdArray lhs);
template IdArray UnaryElewise<kDLGPU, int64_t, arith::Neg>(IdArray lhs);

///////////////////////////// Full /////////////////////////////

template <typename IdType>
__global__ void _FullKernel(
    IdType* out, int64_t length, IdType val) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = val;
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType>
IdArray Full(IdType val, int64_t length, DLContext ctx) {
  IdArray ret = NewIdArray(length, ctx, sizeof(IdType) * 8);
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int nt = cuda::FindNumThreads(length);
  int nb = (length + nt - 1) / nt;
  _FullKernel<IdType><<<nb, nt, 0, thr_entry->stream>>>(ret_data, length, val);
  return ret;
}

template IdArray Full<kDLGPU, int32_t>(int32_t val, int64_t length, DLContext ctx);
template IdArray Full<kDLGPU, int64_t>(int64_t val, int64_t length, DLContext ctx);

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

///////////////////////////// Range /////////////////////////////

template <typename IdType>
__global__ void _RangeKernel(IdType* out, IdType low, IdType length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = low + tx;
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType>
IdArray Range(IdType low, IdType high, DLContext ctx) {
  CHECK(high >= low) << "high must be bigger than low";
  const IdType length = high - low;
  IdArray ret = NewIdArray(length, ctx, sizeof(IdType) * 8);
  if (length == 0)
    return ret;
  IdType* ret_data = static_cast<IdType*>(ret->data);
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
243
  int nt = cuda::FindNumThreads(length);
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  int nb = (length + nt - 1) / nt;
  _RangeKernel<IdType><<<nb, nt, 0, thr_entry->stream>>>(ret_data, low, length);
  return ret;
}

template IdArray Range<kDLGPU, int32_t>(int32_t, int32_t, DLContext);
template IdArray Range<kDLGPU, int64_t>(int64_t, int64_t, DLContext);

///////////////////////////// AsNumBits /////////////////////////////

template <typename InType, typename OutType>
__global__ void _CastKernel(const InType* in, OutType* out, size_t length) {
  int tx = blockIdx.x * blockDim.x + threadIdx.x;
  int stride_x = gridDim.x * blockDim.x;
  while (tx < length) {
    out[tx] = in[tx];
    tx += stride_x;
  }
}

template <DLDeviceType XPU, typename IdType>
IdArray AsNumBits(IdArray arr, uint8_t bits) {
  const std::vector<int64_t> shape(arr->shape, arr->shape + arr->ndim);
  IdArray ret = IdArray::Empty(shape, DLDataType{kDLInt, bits, 1}, arr->ctx);
  const int64_t length = ret.NumElements();
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
270
  int nt = cuda::FindNumThreads(length);
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
  int nb = (length + nt - 1) / nt;
  if (bits == 32) {
    _CastKernel<IdType, int32_t><<<nb, nt, 0, thr_entry->stream>>>(
        static_cast<IdType*>(arr->data), static_cast<int32_t*>(ret->data), length);
  } else {
    _CastKernel<IdType, int64_t><<<nb, nt, 0, thr_entry->stream>>>(
        static_cast<IdType*>(arr->data), static_cast<int64_t*>(ret->data), length);
  }
  return ret;
}


template IdArray AsNumBits<kDLGPU, int32_t>(IdArray arr, uint8_t bits);
template IdArray AsNumBits<kDLGPU, int64_t>(IdArray arr, uint8_t bits);

}  // namespace impl
}  // namespace aten
}  // namespace dgl