array.cc 32 KB
Newer Older
1
2
3
4
5
6
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/array.cc
 * \brief DGL array utilities implementation
 */
#include <dgl/array.h>
7
#include <dgl/graph_traversal.h>
8
9
#include <dgl/packed_func_ext.h>
#include <dgl/runtime/container.h>
10
#include <dgl/runtime/shared_mem.h>
11
12
#include <dgl/runtime/device_api.h>
#include <sstream>
13
14
15
16
#include "../c_api_common.h"
#include "./array_op.h"
#include "./arith.h"

17
using namespace dgl::runtime;
18

19
namespace dgl {
20
21
22
23
24
25
26
27
28
29
30
31
32
33
namespace aten {

IdArray NewIdArray(int64_t length, DLContext ctx, uint8_t nbits) {
  return IdArray::Empty({length}, DLDataType{kDLInt, nbits, 1}, ctx);
}

IdArray Clone(IdArray arr) {
  IdArray ret = NewIdArray(arr->shape[0], arr->ctx, arr->dtype.bits);
  ret.CopyFrom(arr);
  return ret;
}

IdArray Range(int64_t low, int64_t high, uint8_t nbits, DLContext ctx) {
  IdArray ret;
34
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Range", {
35
36
37
38
39
40
41
42
43
44
45
46
47
    if (nbits == 32) {
      ret = impl::Range<XPU, int32_t>(low, high, ctx);
    } else if (nbits == 64) {
      ret = impl::Range<XPU, int64_t>(low, high, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

IdArray Full(int64_t val, int64_t length, uint8_t nbits, DLContext ctx) {
  IdArray ret;
48
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Full", {
49
50
51
52
53
54
55
56
57
58
59
60
    if (nbits == 32) {
      ret = impl::Full<XPU, int32_t>(val, length, ctx);
    } else if (nbits == 64) {
      ret = impl::Full<XPU, int64_t>(val, length, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

IdArray AsNumBits(IdArray arr, uint8_t bits) {
61
62
63
64
65
  CHECK(bits == 32 || bits == 64)
    << "Invalid ID type. Must be int32 or int64, but got int"
    << static_cast<int>(bits) << ".";
  if (arr->dtype.bits == bits)
    return arr;
66
67
  if (arr.NumElements() == 0)
    return NewIdArray(arr->shape[0], arr->ctx, bits);
68
  IdArray ret;
69
  ATEN_XPU_SWITCH_CUDA(arr->ctx.device_type, XPU, "AsNumBits", {
70
71
72
73
74
75
76
77
78
    ATEN_ID_TYPE_SWITCH(arr->dtype, IdType, {
      ret = impl::AsNumBits<XPU, IdType>(arr, bits);
    });
  });
  return ret;
}

IdArray HStack(IdArray lhs, IdArray rhs) {
  IdArray ret;
79
80
  CHECK_SAME_CONTEXT(lhs, rhs);
  CHECK_SAME_DTYPE(lhs, rhs);
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  CHECK_EQ(lhs->shape[0], rhs->shape[0]);
  auto device = runtime::DeviceAPI::Get(lhs->ctx);
  const auto& ctx = lhs->ctx;
  ATEN_ID_TYPE_SWITCH(lhs->dtype, IdType, {
    const int64_t len = lhs->shape[0];
    ret = NewIdArray(2 * len, lhs->ctx, lhs->dtype.bits);
    device->CopyDataFromTo(lhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), 0,
                           len * sizeof(IdType),
                           ctx, ctx, lhs->dtype, nullptr);
    device->CopyDataFromTo(rhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), len * sizeof(IdType),
                           len * sizeof(IdType),
                           ctx, ctx, lhs->dtype, nullptr);
Jinjing Zhou's avatar
Jinjing Zhou committed
95
96
97
98
  });
  return ret;
}

99
100
NDArray IndexSelect(NDArray array, IdArray index) {
  NDArray ret;
101
  CHECK_SAME_CONTEXT(array, index);
102
103
104
  CHECK_GE(array->ndim, 1) << "Only support array with at least 1 dimension";
  CHECK_EQ(array->shape[0], array.NumElements()) << "Only support tensor"
    << " whose first dimension equals number of elements, e.g. (5,), (5, 1)";
105
106
  CHECK_EQ(index->ndim, 1) << "Index array must be an 1D array.";
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
107
108
109
110
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        ret = impl::IndexSelect<XPU, DType, IdType>(array, index);
      });
111
112
113
114
115
    });
  });
  return ret;
}

116
template<typename ValueType>
117
ValueType IndexSelect(NDArray array, int64_t index) {
118
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
119
120
  CHECK(index >= 0 && index < array.NumElements())
    << "Index " << index << " is out of bound.";
121
  ValueType ret = 0;
122
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
123
124
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ret = impl::IndexSelect<XPU, DType>(array, index);
125
126
127
128
    });
  });
  return ret;
}
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
template int32_t IndexSelect<int32_t>(NDArray array, int64_t index);
template int64_t IndexSelect<int64_t>(NDArray array, int64_t index);
template uint32_t IndexSelect<uint32_t>(NDArray array, int64_t index);
template uint64_t IndexSelect<uint64_t>(NDArray array, int64_t index);
template float IndexSelect<float>(NDArray array, int64_t index);
template double IndexSelect<double>(NDArray array, int64_t index);

NDArray IndexSelect(NDArray array, int64_t start, int64_t end) {
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
  CHECK(start >= 0 && start < array.NumElements())
    << "Index " << start << " is out of bound.";
  CHECK(end >= 0 && end <= array.NumElements())
    << "Index " << end << " is out of bound.";
  CHECK_LE(start, end);
  auto device = runtime::DeviceAPI::Get(array->ctx);
  const int64_t len = end - start;
  NDArray ret = NDArray::Empty({len}, array->dtype, array->ctx);
  ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
    device->CopyDataFromTo(array->data, start * sizeof(DType),
                           ret->data, 0, len * sizeof(DType),
                           array->ctx, ret->ctx, array->dtype, nullptr);
  });
  return ret;
}
153

154
155
NDArray Scatter(NDArray array, IdArray indices) {
  NDArray ret;
156
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Scatter", {
157
158
159
160
161
162
163
164
165
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(indices->dtype, IdType, {
        ret = impl::Scatter<XPU, DType, IdType>(array, indices);
      });
    });
  });
  return ret;
}

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
void Scatter_(IdArray index, NDArray value, NDArray out) {
  CHECK_SAME_DTYPE(value, out);
  CHECK_SAME_CONTEXT(index, value);
  CHECK_SAME_CONTEXT(index, out);
  CHECK_EQ(value->shape[0], index->shape[0]);
  if (index->shape[0] == 0)
    return;
  ATEN_XPU_SWITCH_CUDA(value->ctx.device_type, XPU, "Scatter_", {
    ATEN_DTYPE_SWITCH(value->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        impl::Scatter_<XPU, DType, IdType>(index, value, out);
      });
    });
  });
}

182
183
NDArray Repeat(NDArray array, IdArray repeats) {
  NDArray ret;
184
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Repeat", {
185
186
187
188
189
190
191
192
193
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(repeats->dtype, IdType, {
        ret = impl::Repeat<XPU, DType, IdType>(array, repeats);
      });
    });
  });
  return ret;
}

194
195
IdArray Relabel_(const std::vector<IdArray>& arrays) {
  IdArray ret;
196
  ATEN_XPU_SWITCH(arrays[0]->ctx.device_type, XPU, "Relabel_", {
197
198
199
200
201
202
203
    ATEN_ID_TYPE_SWITCH(arrays[0]->dtype, IdType, {
      ret = impl::Relabel_<XPU, IdType>(arrays);
    });
  });
  return ret;
}

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
NDArray Concat(const std::vector<IdArray>& arrays) {
  CHECK(arrays.size() > 1) << "Number of arrays should larger than 1";
  IdArray ret;

  int64_t len = 0, offset = 0;
  for (size_t i = 0; i < arrays.size(); ++i) {
    len += arrays[i]->shape[0];
    CHECK_SAME_DTYPE(arrays[0], arrays[i]);
    CHECK_SAME_CONTEXT(arrays[0], arrays[i]);
  }

  NDArray ret_arr = NDArray::Empty({len},
                                   arrays[0]->dtype,
                                   arrays[0]->ctx);

  auto device = runtime::DeviceAPI::Get(arrays[0]->ctx);
  for (size_t i = 0; i < arrays.size(); ++i) {
    ATEN_DTYPE_SWITCH(arrays[i]->dtype, DType, "array", {
      device->CopyDataFromTo(
        static_cast<DType*>(arrays[i]->data),
        0,
        static_cast<DType*>(ret_arr->data),
        offset,
        arrays[i]->shape[0] * sizeof(DType),
        arrays[i]->ctx,
        ret_arr->ctx,
        arrays[i]->dtype,
        nullptr);

        offset += arrays[i]->shape[0] * sizeof(DType);
    });
  }

  return ret_arr;
}

240
241
242
template<typename ValueType>
std::tuple<NDArray, IdArray, IdArray> Pack(NDArray array, ValueType pad_value) {
  std::tuple<NDArray, IdArray, IdArray> ret;
243
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Pack", {
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ret = impl::Pack<XPU, DType>(array, static_cast<DType>(pad_value));
    });
  });
  return ret;
}

template std::tuple<NDArray, IdArray, IdArray> Pack<int32_t>(NDArray, int32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<int64_t>(NDArray, int64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint32_t>(NDArray, uint32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint64_t>(NDArray, uint64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<float>(NDArray, float);
template std::tuple<NDArray, IdArray, IdArray> Pack<double>(NDArray, double);

std::pair<NDArray, IdArray> ConcatSlices(NDArray array, IdArray lengths) {
  std::pair<NDArray, IdArray> ret;
260
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "ConcatSlices", {
261
262
263
264
265
266
267
268
269
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ATEN_ID_TYPE_SWITCH(lengths->dtype, IdType, {
        ret = impl::ConcatSlices<XPU, DType, IdType>(array, lengths);
      });
    });
  });
  return ret;
}

270
271
272
273
274
275
276
277
278
279
IdArray CumSum(IdArray array, bool prepend_zero) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "CumSum", {
    ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
      ret = impl::CumSum<XPU, IdType>(array, prepend_zero);
    });
  });
  return ret;
}

280
281
282
283
284
285
286
287
288
289
IdArray NonZero(NDArray array) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "NonZero", {
    ATEN_ID_TYPE_SWITCH(array->dtype, DType, {
      ret = impl::NonZero<XPU, DType>(array);
    });
  });
  return ret;
}

290
291
292
293
294
295
296
297
298
299
300
301
302
303
std::pair<IdArray, IdArray> Sort(IdArray array) {
  if (array.NumElements() == 0) {
    IdArray idx = NewIdArray(0, array->ctx, 64);
    return std::make_pair(array, idx);
  }
  std::pair<IdArray, IdArray> ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "Sort", {
    ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
      ret = impl::Sort<XPU, IdType>(array);
    });
  });
  return ret;
}

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
std::string ToDebugString(NDArray array) {
  std::ostringstream oss;
  NDArray a = array.CopyTo(DLContext{kDLCPU, 0});
  oss << "array([";
  ATEN_DTYPE_SWITCH(a->dtype, DType, "array", {
    for (int64_t i = 0; i < std::min<int64_t>(a.NumElements(), 10L); ++i) {
      oss << a.Ptr<DType>()[i] << ", ";
    }
  });
  if (a.NumElements() > 10)
    oss << "...";
  oss << "], dtype=" << array->dtype << ", ctx=" << array->ctx << ")";
  return oss.str();
}

319
320
321
///////////////////////// CSR routines //////////////////////////

bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
322
323
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
324
  bool ret = false;
325
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
326
327
328
329
330
331
332
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  NDArray ret;
333
334
335
336
337
  CHECK_SAME_DTYPE(csr.indices, row);
  CHECK_SAME_DTYPE(csr.indices, col);
  CHECK_SAME_CONTEXT(csr.indices, row);
  CHECK_SAME_CONTEXT(csr.indices, col);
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
338
339
340
341
342
343
344
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

bool CSRHasDuplicate(CSRMatrix csr) {
  bool ret = false;
345
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRHasDuplicate", {
346
347
348
349
350
351
    ret = impl::CSRHasDuplicate<XPU, IdType>(csr);
  });
  return ret;
}

int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
352
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
353
  int64_t ret = 0;
354
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
355
356
357
358
359
360
361
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray row) {
  NDArray ret;
362
363
364
  CHECK_SAME_DTYPE(csr.indices, row);
  CHECK_SAME_CONTEXT(csr.indices, row);
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
365
366
367
368
369
370
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
371
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
372
  NDArray ret;
373
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowColumnIndices", {
374
375
376
377
378
379
    ret = impl::CSRGetRowColumnIndices<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
380
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
381
  NDArray ret;
382
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowData", {
383
    ret = impl::CSRGetRowData<XPU, IdType>(csr, row);
384
385
386
387
  });
  return ret;
}

388
389
390
391
392
393
394
395
396
397
bool CSRIsSorted(CSRMatrix csr) {
  if (csr.indices->shape[0] <= 1)
    return true;
  bool ret = false;
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsSorted", {
    ret = impl::CSRIsSorted<XPU, IdType>(csr);
  });
  return ret;
}

398
399
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
  NDArray ret;
400
401
402
403
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
  CHECK_SAME_CONTEXT(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, cols);
404
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetData", {
405
    ret = impl::CSRGetData<XPU, IdType>(csr, rows, cols);
406
407
408
409
410
411
  });
  return ret;
}

std::vector<NDArray> CSRGetDataAndIndices(
    CSRMatrix csr, NDArray rows, NDArray cols) {
412
413
414
415
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
  CHECK_SAME_CONTEXT(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, cols);
416
  std::vector<NDArray> ret;
417
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetDataAndIndices", {
418
    ret = impl::CSRGetDataAndIndices<XPU, IdType>(csr, rows, cols);
419
420
421
422
423
424
  });
  return ret;
}

CSRMatrix CSRTranspose(CSRMatrix csr) {
  CSRMatrix ret;
425
426
427
428
  ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRTranspose", {
    ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
      ret = impl::CSRTranspose<XPU, IdType>(csr);
    });
429
430
431
432
433
434
435
  });
  return ret;
}

COOMatrix CSRToCOO(CSRMatrix csr, bool data_as_order) {
  COOMatrix ret;
  if (data_as_order) {
436
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOODataAsOrder", {
437
438
439
440
441
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOODataAsOrder<XPU, IdType>(csr);
      });
    });
  } else {
442
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOO", {
443
444
445
446
447
448
449
450
451
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOO<XPU, IdType>(csr);
      });
    });
  }
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
452
453
454
  CHECK(start >= 0 && start < csr.num_rows) << "Invalid start index: " << start;
  CHECK(end >= 0 && end <= csr.num_rows) << "Invalid end index: " << end;
  CHECK_GE(end, start);
455
  CSRMatrix ret;
456
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
457
    ret = impl::CSRSliceRows<XPU, IdType>(csr, start, end);
458
459
460
461
462
  });
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
463
464
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, rows);
465
  CSRMatrix ret;
466
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
467
    ret = impl::CSRSliceRows<XPU, IdType>(csr, rows);
468
469
470
471
472
  });
  return ret;
}

CSRMatrix CSRSliceMatrix(CSRMatrix csr, NDArray rows, NDArray cols) {
473
474
475
476
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
  CHECK_SAME_CONTEXT(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, cols);
477
  CSRMatrix ret;
478
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceMatrix", {
479
    ret = impl::CSRSliceMatrix<XPU, IdType>(csr, rows, cols);
480
481
482
483
  });
  return ret;
}

484
void CSRSort_(CSRMatrix* csr) {
485
486
487
  if (csr->sorted)
    return;
  ATEN_CSR_SWITCH_CUDA(*csr, XPU, IdType, "CSRSort_", {
488
    impl::CSRSort_<XPU, IdType>(csr);
Da Zheng's avatar
Da Zheng committed
489
490
491
  });
}

Da Zheng's avatar
Da Zheng committed
492
493
494
495
496
497
498
499
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  CSRMatrix ret;
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRReorder", {
    ret = impl::CSRReorder<XPU, IdType>(csr, new_row_ids, new_col_ids);
  });
  return ret;
}

500
501
CSRMatrix CSRRemove(CSRMatrix csr, IdArray entries) {
  CSRMatrix ret;
502
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRRemove", {
503
504
505
506
507
    ret = impl::CSRRemove<XPU, IdType>(csr, entries);
  });
  return ret;
}

508
509
510
COOMatrix CSRRowWiseSampling(
    CSRMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
  COOMatrix ret;
511
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseSampling", {
512
    if (IsNullArray(prob)) {
513
514
515
516
517
518
519
520
521
522
523
524
      ret = impl::CSRRowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
    } else {
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::CSRRowWiseSampling<XPU, IdType, FloatType>(
            mat, rows, num_samples, prob, replace);
      });
    }
  });
  return ret;
}

COOMatrix CSRRowWiseTopk(
525
    CSRMatrix mat, IdArray rows, int64_t k, NDArray weight, bool ascending) {
526
  COOMatrix ret;
527
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseTopk", {
528
529
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::CSRRowWiseTopk<XPU, IdType, DType>(
530
531
532
533
534
535
          mat, rows, k, weight, ascending);
    });
  });
  return ret;
}

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

CSRMatrix UnionCsr(const std::vector<CSRMatrix>& csrs) {
  CSRMatrix ret;
  CHECK_GT(csrs.size(), 1) << "UnionCsr creates a union of multiple CSRMatrixes";
  // sanity check
  for (size_t i = 1; i < csrs.size(); ++i) {
    CHECK_EQ(csrs[0].num_rows, csrs[i].num_rows) <<
      "UnionCsr requires both CSRMatrix have same number of rows";
    CHECK_EQ(csrs[0].num_cols, csrs[i].num_cols) <<
      "UnionCsr requires both CSRMatrix have same number of cols";
    CHECK_SAME_CONTEXT(csrs[0].indptr, csrs[i].indptr);
    CHECK_SAME_DTYPE(csrs[0].indptr, csrs[i].indptr);
  }

  ATEN_CSR_SWITCH(csrs[0], XPU, IdType, "UnionCsr", {
    ret = impl::UnionCsr<XPU, IdType>(csrs);
  });
  return ret;
}


557
558
559
560
561
562
563
564
565
566
567
std::tuple<CSRMatrix, IdArray, IdArray>
CSRToSimple(const CSRMatrix& csr) {
  std::tuple<CSRMatrix, IdArray, IdArray> ret;

  CSRMatrix sorted_csr = (CSRIsSorted(csr)) ? csr : CSRSort(csr);
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRToSimple", {
    ret = impl::CSRToSimple<XPU, IdType>(sorted_csr);
  });
  return ret;
}

568
569
///////////////////////// COO routines //////////////////////////

570
571
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
  bool ret = false;
572
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
573
574
575
576
577
578
579
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
  NDArray ret;
580
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
581
582
583
584
585
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

586
587
bool COOHasDuplicate(COOMatrix coo) {
  bool ret = false;
588
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOHasDuplicate", {
589
590
591
592
593
    ret = impl::COOHasDuplicate<XPU, IdType>(coo);
  });
  return ret;
}

594
595
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
  int64_t ret = 0;
596
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowNNZ", {
597
598
599
600
601
602
603
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

NDArray COOGetRowNNZ(COOMatrix coo, NDArray row) {
  NDArray ret;
604
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowNNZ", {
605
606
607
608
609
610
611
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

std::pair<NDArray, NDArray> COOGetRowDataAndIndices(COOMatrix coo, int64_t row) {
  std::pair<NDArray, NDArray> ret;
612
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowDataAndIndices", {
613
    ret = impl::COOGetRowDataAndIndices<XPU, IdType>(coo, row);
614
615
616
617
618
619
620
  });
  return ret;
}

std::vector<NDArray> COOGetDataAndIndices(
    COOMatrix coo, NDArray rows, NDArray cols) {
  std::vector<NDArray> ret;
621
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetDataAndIndices", {
622
    ret = impl::COOGetDataAndIndices<XPU, IdType>(coo, rows, cols);
623
624
625
626
  });
  return ret;
}

627
628
629
630
631
632
633
634
NDArray COOGetData(COOMatrix coo, NDArray rows, NDArray cols) {
  NDArray ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetData", {
    ret = impl::COOGetData<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

635
COOMatrix COOTranspose(COOMatrix coo) {
636
  return COOMatrix(coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data);
637
638
}

639
640
CSRMatrix COOToCSR(COOMatrix coo) {
  CSRMatrix ret;
641
642
643
644
  ATEN_XPU_SWITCH_CUDA(coo.row->ctx.device_type, XPU, "COOToCSR", {
    ATEN_ID_TYPE_SWITCH(coo.row->dtype, IdType, {
      ret = impl::COOToCSR<XPU, IdType>(coo);
    });
645
646
647
648
  });
  return ret;
}

649
650
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
  COOMatrix ret;
651
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
652
    ret = impl::COOSliceRows<XPU, IdType>(coo, start, end);
653
654
655
656
657
658
  });
  return ret;
}

COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
  COOMatrix ret;
659
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
660
    ret = impl::COOSliceRows<XPU, IdType>(coo, rows);
661
662
663
664
665
666
  });
  return ret;
}

COOMatrix COOSliceMatrix(COOMatrix coo, NDArray rows, NDArray cols) {
  COOMatrix ret;
667
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceMatrix", {
668
669
670
671
672
    ret = impl::COOSliceMatrix<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

673
674
675
676
677
678
void COOSort_(COOMatrix* mat, bool sort_column) {
  if ((mat->row_sorted && !sort_column) || mat->col_sorted)
    return;
  ATEN_XPU_SWITCH_CUDA(mat->row->ctx.device_type, XPU, "COOSort_", {
    ATEN_ID_TYPE_SWITCH(mat->row->dtype, IdType, {
      impl::COOSort_<XPU, IdType>(mat, sort_column);
679
    });
680
  });
681
682
683
684
685
686
687
688
689
}

std::pair<bool, bool> COOIsSorted(COOMatrix coo) {
  if (coo.row->shape[0] <= 1)
    return {true, true};
  std::pair<bool, bool> ret;
  ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOIsSorted", {
    ret = impl::COOIsSorted<XPU, IdType>(coo);
  });
690
691
692
  return ret;
}

693
694
695
696
697
698
699
700
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOReorder", {
    ret = impl::COOReorder<XPU, IdType>(coo, new_row_ids, new_col_ids);
  });
  return ret;
}

701
702
COOMatrix COORemove(COOMatrix coo, IdArray entries) {
  COOMatrix ret;
703
  ATEN_COO_SWITCH(coo, XPU, IdType, "COORemove", {
704
705
706
707
708
    ret = impl::COORemove<XPU, IdType>(coo, entries);
  });
  return ret;
}

709
710
711
COOMatrix COORowWiseSampling(
    COOMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
  COOMatrix ret;
712
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseSampling", {
713
    if (IsNullArray(prob)) {
714
715
716
717
718
719
720
721
722
723
724
725
726
727
      ret = impl::COORowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
    } else {
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::COORowWiseSampling<XPU, IdType, FloatType>(
            mat, rows, num_samples, prob, replace);
      });
    }
  });
  return ret;
}

COOMatrix COORowWiseTopk(
    COOMatrix mat, IdArray rows, int64_t k, FloatArray weight, bool ascending) {
  COOMatrix ret;
728
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseTopk", {
729
730
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::COORowWiseTopk<XPU, IdType, DType>(
731
732
          mat, rows, k, weight, ascending);
    });
733
734
735
736
  });
  return ret;
}

737
738
std::pair<COOMatrix, IdArray> COOCoalesce(COOMatrix coo) {
  std::pair<COOMatrix, IdArray> ret;
739
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOCoalesce", {
740
741
742
743
744
    ret = impl::COOCoalesce<XPU, IdType>(coo);
  });
  return ret;
}

745
746
747
748
749
750
751
COOMatrix COOLineGraph(const COOMatrix &coo, bool backtracking) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOLineGraph", {
    ret = impl::COOLineGraph<XPU, IdType>(coo, backtracking);
  });
  return ret;
}
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

COOMatrix UnionCoo(const std::vector<COOMatrix>& coos) {
  COOMatrix ret;
  CHECK_GT(coos.size(), 1) << "UnionCoo creates a union of multiple COOMatrixes";
  // sanity check
  for (size_t i = 1; i < coos.size(); ++i) {
    CHECK_EQ(coos[0].num_rows, coos[i].num_rows) <<
      "UnionCoo requires both COOMatrix have same number of rows";
    CHECK_EQ(coos[0].num_cols, coos[i].num_cols) <<
      "UnionCoo requires both COOMatrix have same number of cols";
    CHECK_SAME_CONTEXT(coos[0].row, coos[i].row);
    CHECK_SAME_DTYPE(coos[0].row, coos[i].row);
  }

  // we assume the number of coos is not large in common cases
  std::vector<IdArray> coo_row;
  std::vector<IdArray> coo_col;
  bool has_data = false;

  for (size_t i = 0; i < coos.size(); ++i) {
    coo_row.push_back(coos[i].row);
    coo_col.push_back(coos[i].col);
    has_data |= COOHasData(coos[i]);
  }

  IdArray row = Concat(coo_row);
  IdArray col = Concat(coo_col);
  IdArray data = NullArray();

  if (has_data) {
    std::vector<IdArray> eid_data;
    eid_data.push_back(COOHasData(coos[0]) ?
                       coos[0].data :
                       Range(0,
                             coos[0].row->shape[0],
                             coos[0].row->dtype.bits,
                             coos[0].row->ctx));
    int64_t num_edges = coos[0].row->shape[0];
    for (size_t i = 1; i < coos.size(); ++i) {
      eid_data.push_back(COOHasData(coos[i]) ?
                         coos[i].data + num_edges :
                         Range(num_edges,
                               num_edges + coos[i].row->shape[0],
                               coos[i].row->dtype.bits,
                               coos[i].row->ctx));
      num_edges += coos[i].row->shape[0];
    }

    data = Concat(eid_data);
  }

  return COOMatrix(
    coos[0].num_rows,
    coos[0].num_cols,
    row,
    col,
    data,
    false,
    false);
}


814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
std::tuple<COOMatrix, IdArray, IdArray>
COOToSimple(const COOMatrix& coo) {
  // coo column sorted
  const COOMatrix sorted_coo = COOSort(coo, true);
  const IdArray eids_shuffled = COOHasData(sorted_coo) ?
    sorted_coo.data :
    Range(0, sorted_coo.row->shape[0], sorted_coo.row->dtype.bits, sorted_coo.row->ctx);
  const auto &coalesced_result = COOCoalesce(sorted_coo);
  const COOMatrix &coalesced_adj = coalesced_result.first;
  const IdArray &count = coalesced_result.second;

  /*
   * eids_shuffled actually already contains the mapping from old edge space to the
   * new one:
   *
   * * eids_shuffled[0:count[0]] indicates the original edge IDs that coalesced into new
   *   edge #0.
   * * eids_shuffled[count[0]:count[0] + count[1]] indicates those that coalesced into
   *   new edge #1.
   * * eids_shuffled[count[0] + count[1]:count[0] + count[1] + count[2]] indicates those
   *   that coalesced into new edge #2.
   * * etc.
   *
   * Here, we need to translate eids_shuffled to an array "eids_remapped" such that
   * eids_remapped[i] indicates the new edge ID the old edge #i is mapped to.  The
   * translation can simply be achieved by (in numpy code):
   *
   *     new_eid_for_eids_shuffled = np.range(len(count)).repeat(count)
   *     eids_remapped = np.zeros_like(new_eid_for_eids_shuffled)
   *     eids_remapped[eids_shuffled] = new_eid_for_eids_shuffled
   */
  const IdArray new_eids = Range(
    0, coalesced_adj.row->shape[0], coalesced_adj.row->dtype.bits, coalesced_adj.row->ctx);
  const IdArray eids_remapped = Scatter(Repeat(new_eids, count), eids_shuffled);

  COOMatrix ret = COOMatrix(
    coalesced_adj.num_rows,
    coalesced_adj.num_cols,
    coalesced_adj.row,
    coalesced_adj.col,
    NullArray(),
    true,
    true);
  return std::make_tuple(ret, count, eids_remapped);
}

860
///////////////////////// Graph Traverse routines //////////////////////////
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
Frontiers BFSNodesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSNodesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers BFSEdgesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSEdgesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSEdgesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers TopologicalNodesFrontiers(const CSRMatrix& csr) {
  Frontiers ret;
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(csr.indptr->ctx.device_type, XPU, "TopologicalNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(csr.indices->dtype, IdType, {
      ret = impl::TopologicalNodesFrontiers<XPU, IdType>(csr);
    });
  });
  return ret;
}

Frontiers DGLDFSEdges(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSEdges<XPU, IdType>(csr, source);
    });
  });
  return ret;
}
920

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
Frontiers DGLDFSLabeledEdges(const CSRMatrix& csr,
                             IdArray source,
                             const bool has_reverse_edge,
                             const bool has_nontree_edge,
                             const bool return_labels) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSLabeledEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSLabeledEdges<XPU, IdType>(csr,
                                                  source,
                                                  has_reverse_edge,
                                                  has_nontree_edge,
                                                  return_labels);
    });
  });
  return ret;
}

945

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
///////////////////////// C APIs /////////////////////////
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFormat")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->format;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumRows")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_rows;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumCols")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_cols;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetIndices")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    const int64_t i = args[1];
    *rv = spmat->indices[i];
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFlags")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    List<Value> flags;
    for (bool flg : spmat->flags) {
      flags.push_back(Value(MakeValue(flg)));
    }
    *rv = flags;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLCreateSparseMatrix")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const int32_t format = args[0];
    const int64_t nrows = args[1];
    const int64_t ncols = args[2];
    const List<Value> indices = args[3];
    const List<Value> flags = args[4];
    std::shared_ptr<SparseMatrix> spmat(new SparseMatrix(
          format, nrows, ncols,
          ListValueToVector<IdArray>(indices),
          ListValueToVector<bool>(flags)));
    *rv = SparseMatrixRef(spmat);
  });

996
997
998
999
1000
1001
1002
1003
1004
1005
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLExistSharedMemArray")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string name = args[0];
#ifndef _WIN32
    *rv = SharedMemory::Exist(name);
#else
    *rv = false;
#endif  // _WIN32
  });

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLArrayCastToSigned")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray array = args[0];
    CHECK_EQ(array->dtype.code, kDLUInt);
    std::vector<int64_t> shape(array->shape, array->shape + array->ndim);
    DLDataType dtype = array->dtype;
    dtype.code = kDLInt;
    *rv = array.CreateView(shape, dtype, 0);
  });

1016
1017
}  // namespace aten
}  // namespace dgl
1018
1019
1020
1021

std::ostream& operator << (std::ostream& os, dgl::runtime::NDArray array) {
  return os << dgl::aten::ToDebugString(array);
}