README.md 925 Bytes
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Predict then Propagate: Graph Neural Networks meet Personalized PageRank (APPNP)
============

- Paper link: [Predict then Propagate: Graph Neural Networks meet Personalized PageRank](https://arxiv.org/abs/1810.05997)
- Author's code repo: [https://github.com/klicperajo/ppnp](https://github.com/klicperajo/ppnp). 

Dependencies
------------
- MXNET 1.5+
- requests

``bash
pip install torch requests
``

Code
-----
The folder contains an implementation of APPNP (`appnp.py`).

Results
-------

Run with following (available dataset: "cora", "citeseer", "pubmed")
```bash
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
25
DGLBACKEND=mxnet python3 appnp.py --dataset cora --gpu 0
26
27
28
29
30
31
```

* cora: 0.8370 (paper: 0.850)
* citeseer: 0.713 (paper: 0.757)
* pubmed: 0.798 (paper: 0.797)

xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
32
Experiments were done on dgl datasets (GCN settings) which are different from those used in the original implementation. (discrepancies are detailed in experimental section of the original paper)