gcn_spmv.py 6.4 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
6
7
"""
Semi-Supervised Classification with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1609.02907
Code: https://github.com/tkipf/gcn

GCN with SPMV specialization.
"""
8
import argparse, time, math
Minjie Wang's avatar
Minjie Wang committed
9
10
11
12
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
13
import dgl.function as fn
Minjie Wang's avatar
Minjie Wang committed
14
from dgl import DGLGraph
15
from dgl.data import register_data_args, load_data
Minjie Wang's avatar
Minjie Wang committed
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class GCNLayer(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 out_feats,
                 activation,
                 dropout,
                 bias=True):
        super(GCNLayer, self).__init__()
        self.g = g
        self.weight = nn.Parameter(torch.Tensor(in_feats, out_feats))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_feats))
        else:
            self.bias = None
Minjie Wang's avatar
Minjie Wang committed
32
        self.activation = activation
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
        if dropout:
            self.dropout = nn.Dropout(p=dropout)
        else:
            self.dropout = 0.
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, h):
        if self.dropout:
            h = self.dropout(h)
        h = torch.mm(h, self.weight)
        # normalization by square root of src degree
        h = h * self.g.ndata['norm']
        self.g.ndata['h'] = h
        self.g.update_all(fn.copy_src(src='h', out='m'),
                          fn.sum(msg='m', out='h'))
        h = self.g.ndata.pop('h')
55
        # normalization by square root of dst degree
56
57
58
59
        h = h * self.g.ndata['norm']
        # bias
        if self.bias is not None:
            h = h + self.bias
Minjie Wang's avatar
Minjie Wang committed
60
61
        if self.activation:
            h = self.activation(h)
62
        return h
Minjie Wang's avatar
Minjie Wang committed
63
64
65
66
67
68
69
70
71
72
73

class GCN(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
74
        self.layers = nn.ModuleList()
Minjie Wang's avatar
Minjie Wang committed
75
        # input layer
76
        self.layers.append(GCNLayer(g, in_feats, n_hidden, activation, 0.))
Minjie Wang's avatar
Minjie Wang committed
77
78
        # hidden layers
        for i in range(n_layers - 1):
79
            self.layers.append(GCNLayer(g, n_hidden, n_hidden, activation, dropout))
Minjie Wang's avatar
Minjie Wang committed
80
        # output layer
81
        self.layers.append(GCNLayer(g, n_hidden, n_classes, None, dropout))
Minjie Wang's avatar
Minjie Wang committed
82
83

    def forward(self, features):
84
85
86
87
        h = features
        for layer in self.layers:
            h = layer(h)
        return h
Minjie Wang's avatar
Minjie Wang committed
88

89
90
91
92
93
94
95
96
97
98
def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

Minjie Wang's avatar
Minjie Wang committed
99
100
def main(args):
    # load and preprocess dataset
101
    data = load_data(args)
Minjie Wang's avatar
Minjie Wang committed
102
103
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
104
105
106
    train_mask = torch.ByteTensor(data.train_mask)
    val_mask = torch.ByteTensor(data.val_mask)
    test_mask = torch.ByteTensor(data.test_mask)
Minjie Wang's avatar
Minjie Wang committed
107
108
109
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
110
111
112
113
114
115
116
117
118
119
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
              train_mask.sum().item(),
              val_mask.sum().item(),
              test_mask.sum().item()))
Minjie Wang's avatar
Minjie Wang committed
120
121
122
123
124
125
126
127

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
128
129
130
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()
Minjie Wang's avatar
Minjie Wang committed
131

132
    # graph preprocess and calculate normalization factor
Minjie Wang's avatar
Minjie Wang committed
133
    g = DGLGraph(data.graph)
134
135
136
137
138
139
140
141
142
143
144
145
    n_edges = g.number_of_edges()
    # add self loop
    g.add_edges(g.nodes(), g.nodes())
    # normalization
    degs = g.in_degrees().float()
    norm = torch.pow(degs, -0.5)
    norm[torch.isinf(norm)] = 0
    if cuda:
        norm = norm.cuda()
    g.ndata['norm'] = norm.unsqueeze(1)

    # create GCN model
Minjie Wang's avatar
Minjie Wang committed
146
147
148
149
150
151
152
153
154
155
    model = GCN(g,
                in_feats,
                args.n_hidden,
                n_classes,
                args.n_layers,
                F.relu,
                args.dropout)

    if cuda:
        model.cuda()
156
    loss_fcn = torch.nn.CrossEntropyLoss()
Minjie Wang's avatar
Minjie Wang committed
157
158

    # use optimizer
159
160
161
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)
Minjie Wang's avatar
Minjie Wang committed
162
163
164
165

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
166
        model.train()
Minjie Wang's avatar
Minjie Wang committed
167
168
169
170
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
171
        loss = loss_fcn(logits[train_mask], labels[train_mask])
Minjie Wang's avatar
Minjie Wang committed
172
173
174
175
176
177
178
179

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

180
181
182
183
184
185
186
187
188
        acc = evaluate(model, features, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(),
                                             acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))

Minjie Wang's avatar
Minjie Wang committed
189
190
191

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
192
    register_data_args(parser)
193
    parser.add_argument("--dropout", type=float, default=0.5,
Minjie Wang's avatar
Minjie Wang committed
194
195
196
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
197
    parser.add_argument("--lr", type=float, default=1e-2,
Minjie Wang's avatar
Minjie Wang committed
198
            help="learning rate")
199
    parser.add_argument("--n-epochs", type=int, default=200,
Minjie Wang's avatar
Minjie Wang committed
200
201
202
203
204
            help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
205
206
    parser.add_argument("--weight-decay", type=float, default=5e-4,
            help="Weight for L2 loss")
Minjie Wang's avatar
Minjie Wang committed
207
208
209
210
    args = parser.parse_args()
    print(args)

    main(args)