kernel.cc 6.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

#include "kernel_decl.h"
#include "../c_api_common.h"

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

// Check whether the given arguments have the same context.
inline void CheckCtx(
    const DLContext& ctx,
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK_EQ(ctx, arrays[i]->ctx)
      << "Expected device context " << ctx << ". But got "
      << arrays[i]->ctx << " for " << names[i] << ".";
  }
}

// Check whether input tensors are contiguous.
inline void CheckContiguous(
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK(arrays[i].IsContiguous())
      << "Expect " << names[i] << " to be a contiguous tensor";
  }
}

// Check whether input tensors have valid shape.
inline void CheckShape(
    const std::vector<uint64_t>& gdim,
    const std::vector<int>& uev_idx,
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK_GE(arrays[i]->ndim, 2)
      << "Expect " << names[i] << " to have ndim >= 2, "
      << "Note that for scalar feature we expand its "
      << "dimension with an additional dimension of "
      << "length one.";
    CHECK_EQ(gdim[uev_idx[i]], arrays[i]->shape[0])
      << "Expect " << names[i] << " to have size "
      << gdim[uev_idx[i]] << " on the first dimension, "
      << "but got " << arrays[i]->shape[0];
  }
}

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
          std::vector<NDArray> out_aux,
          SparseFormat format) {
  // TODO(zihao): format tuning
  format = SparseFormat::kCSR;
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_TYPE_SWITCH(out->dtype, DType, "Feature data", {
        if (format == SparseFormat::kCSR) {
          SpMMCsr<XPU, IdType, DType>(
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
          SpMMCoo<XPU, IdType, DType>(
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
          LOG(FATAL) << "SpMM only supports CSR and COO foramts";
        }
      });
    });
  });
}

/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
101
102
           NDArray lhs,
           NDArray rhs,
103
           NDArray out,
104
105
           int lhs_target,
           int rhs_target,
106
107
108
           SparseFormat format) {
  // TODO(zihao): format tuning
  format = SparseFormat::kCOO;
109
  const auto& bcast = CalcBcastOff(op, lhs, rhs);
110
111
112
113
114
115
116

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_TYPE_SWITCH(out->dtype, DType, "Feature data", {
        if (format == SparseFormat::kCSR) {
          SDDMMCsr<XPU, IdType, DType>(
              op, bcast, graph->GetCSRMatrix(0),
117
              lhs, rhs, out, lhs_target, rhs_target);
118
119
120
        } else if (format == SparseFormat::kCOO) {
          SDDMMCoo<XPU, IdType, DType>(
              op, bcast, graph->GetCOOMatrix(0),
121
              lhs, rhs, out, lhs_target, rhs_target);
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        } else {
          LOG(FATAL) << "SDDMM only supports CSR and COO foramts";
        }
      });
    });
  });
}

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE}, SparseFormat::kAny);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
160
161
162
163
164
165
166
    NDArray lhs = args[2];
    NDArray rhs = args[3];
    NDArray out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
167
168
169
170
171
172
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
173
174
        {lhs_target, rhs_target, 1},
        {lhs, rhs, out},
175
        {"U_data", "E_data", "V_data"});
176
    SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target, SparseFormat::kAny);
177
178
179
180
  });

}  // namespace aten
}  // namespace dgl