spmm.h 14.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cpu/spmm.h
 * \brief SPMM CPU kernel function header.
 */
#ifndef DGL_ARRAY_CPU_SPMM_H_
#define DGL_ARRAY_CPU_SPMM_H_

#include <dgl/array.h>
#include <dgl/bcast.h>
#include <limits>
#include <algorithm>

namespace dgl {
namespace aten {
namespace cpu {

/*!
 * \brief CPU kernel of SpMM on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes.
 */
template <typename IdType, typename DType, typename Op>
void SpMMSumCsr(
    const BcastOff& bcast,
    const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat,
    NDArray out) {
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  const IdType* indices = csr.indices.Ptr<IdType>();
  const IdType* edges = csr.data.Ptr<IdType>();
  const DType* X = ufeat.Ptr<DType>();
  const DType* W = efeat.Ptr<DType>();
  int64_t dim = bcast.out_len,
          lhs_dim = bcast.lhs_len,
          rhs_dim = bcast.rhs_len;
  DType* O = out.Ptr<DType>();
#pragma omp parallel for
  for (IdType rid = 0; rid < csr.num_rows; ++rid) {
    const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
    DType* out_off = O + rid * dim;
    for (int64_t k = 0; k < dim; ++k) {
      DType accum = 0;
      for (IdType j = row_start; j < row_end; ++j) {
        const IdType cid = indices[j];
        const IdType eid = has_idx? edges[j] : j;
        const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
        const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
        const DType* lhs_off = Op::use_lhs? X + cid * lhs_dim + lhs_add : nullptr;
        const DType* rhs_off = Op::use_rhs? W + eid * rhs_dim + rhs_add : nullptr;
        accum += Op::Call(lhs_off, rhs_off);
      }
      out_off[k] = accum;
    }
  }
}

/*!
 * \brief CPU kernel of SpMM on Coo format.
 * \param bcast Broadcast information.
 * \param coo The Coo matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes. To avoid possible data hazard,
 *       we use atomic operators in the reduction phase.
 */
template <typename IdType, typename DType, typename Op>
void SpMMSumCoo(
    const BcastOff& bcast,
    const COOMatrix& coo,
    NDArray ufeat, NDArray efeat,
    NDArray out) {
  const bool has_idx = !IsNullArray(coo.data);
  const IdType* row = coo.row.Ptr<IdType>();
  const IdType* col = coo.col.Ptr<IdType>();
  const IdType* edges = coo.data.Ptr<IdType>();
  const DType* X = ufeat.Ptr<DType>();
  const DType* W = efeat.Ptr<DType>();
  int64_t dim = bcast.out_len,
          lhs_dim = bcast.lhs_len,
          rhs_dim = bcast.rhs_len;
  DType* O = out.Ptr<DType>();
  const int64_t nnz = coo.row->shape[0];
  // fill zero elements
  memset(O, 0, out.GetSize());
  // spmm
#pragma omp parallel for
  for (IdType i = 0; i < nnz; ++i) {
    const IdType rid = row[i];
    const IdType cid = col[i];
    const IdType eid = has_idx? edges[i] : i;
    DType* out_off = O + cid * dim;
    for (int64_t k = 0; k < dim; ++k) {
      const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
      const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
      const DType* lhs_off = Op::use_lhs? X + rid * lhs_dim + lhs_add : nullptr;
      const DType* rhs_off = Op::use_rhs? W + eid * rhs_dim + rhs_add : nullptr;
      const DType val = Op::Call(lhs_off, rhs_off);
#pragma omp atomic
      out_off[k] += val;
    }
  }
}

/*!
 * \brief CPU kernel of SpMM-Min/Max on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \param argu Arg-Min/Max on source nodes, which refers the source node indices 
 *        correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max reducer.
 * \param arge Arg-Min/Max on edges. which refers the source node indices 
 *        correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max reducer.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes.
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
void SpMMCmpCsr(
    const BcastOff& bcast,
    const CSRMatrix& csr,
    NDArray ufeat, NDArray efeat,
    NDArray out, NDArray argu, NDArray arge) {
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices = static_cast<IdType*>(csr.indices->data);
  const IdType* edges = has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
  const DType* X = Op::use_lhs? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len,
                lhs_dim = bcast.lhs_len,
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
  IdType* argX = Op::use_lhs? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs? static_cast<IdType*>(arge->data) : nullptr;
#pragma omp parallel for
  for (IdType rid = 0; rid < csr.num_rows; ++rid) {
    const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
    DType* out_off = O + rid * dim;
    IdType* argx_off = argX + rid * dim;
    IdType* argw_off = argW + rid * dim;
    for (int64_t k = 0; k < dim; ++k) {
      DType accum = Cmp::zero;
      IdType ax = 0, aw = 0;
      for (IdType j = row_start; j < row_end; ++j) {
        const IdType cid = indices[j];
        const IdType eid = has_idx? edges[j] : j;
        const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
        const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
        const DType* lhs_off = Op::use_lhs? X + cid * lhs_dim + lhs_add : nullptr;
        const DType* rhs_off = Op::use_rhs? W + eid * rhs_dim + rhs_add : nullptr;
        const DType val = Op::Call(lhs_off, rhs_off);
        if (Cmp::Call(accum, val)) {
          accum = val;
          if (Op::use_lhs)
            ax = cid;
          if (Op::use_rhs)
            aw = eid;
        }
      }
      out_off[k] = accum;
      if (Op::use_lhs)
        argx_off[k] = ax;
      if (Op::use_rhs)
        argw_off[k] = aw;
    }
  }
}

/*!
 * \brief CPU kernel of SpMM-Min/Max on Coo format.
 * \param bcast Broadcast information.
 * \param coo The Coo matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \param argu Arg-Min/Max on source nodes, which refers the source node indices 
 *        correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max reducer.
 * \param arge Arg-Min/Max on edges. which refers the source node indices 
 *        correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max reducer.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes. To avoid possible data hazard,
 *       we use atomic operators in the reduction phase.
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
void SpMMCmpCoo(
    const BcastOff& bcast,
    const COOMatrix& coo,
    NDArray ufeat, NDArray efeat,
    NDArray out, NDArray argu, NDArray arge) {
  const bool has_idx = !IsNullArray(coo.data);
  const IdType* row = static_cast<IdType*>(coo.row->data);
  const IdType* col = static_cast<IdType*>(coo.col->data);
  const IdType* edges = has_idx? static_cast<IdType*>(coo.data->data) : nullptr;
  const DType* X = Op::use_lhs? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len,
                lhs_dim = bcast.lhs_len,
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
  IdType* argX = Op::use_lhs? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs? static_cast<IdType*>(arge->data) : nullptr;
  const int64_t nnz = coo.row->shape[0];
  // fill zero elements
  std::fill(O, O + out.NumElements(), Cmp::zero);
  // spmm
#pragma omp parallel for
  for (IdType i = 0; i < nnz; ++i) {
    const IdType rid = row[i];
    const IdType cid = col[i];
    const IdType eid = has_idx? edges[i] : i;
    DType* out_off = O + cid * dim;
    IdType* argx_off = Op::use_lhs? argX + cid * dim : nullptr;
    IdType* argw_off = Op::use_rhs? argW + cid * dim : nullptr;
    for (int64_t k = 0; k < dim; ++k) {
      const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
      const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
      const DType* lhs_off = Op::use_lhs? X + rid * lhs_dim + lhs_add : nullptr;
      const DType* rhs_off = Op::use_rhs? W + eid * rhs_dim + rhs_add : nullptr;
      const DType val = Op::Call(lhs_off, rhs_off);
#pragma omp critical
      if (Cmp::Call(out_off[k], val)) {
        out_off[k] = val;
        if (Op::use_lhs)
          argx_off[k] = rid;
        if (Op::use_rhs)
          argw_off[k] = eid;
      }
    }
  }
}

namespace op {

//////////////////////////////// binary operators on CPU ////////////////////////////////
template <typename DType>
struct Add {
  static constexpr bool use_lhs = true;
  static constexpr bool use_rhs = true;
  inline static DType Call(const DType* lhs_off, const DType* rhs_off) {
    return *lhs_off + *rhs_off;
  }
};
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
257
258
template <typename DType> constexpr bool Add<DType>::use_lhs;
template <typename DType> constexpr bool Add<DType>::use_rhs;
259
260
261
262
263
264
265
266
267

template <typename DType>
struct Sub {
  static constexpr bool use_lhs = true;
  static constexpr bool use_rhs = true;
  inline static DType Call(const DType* lhs_off, const DType* rhs_off) {
    return *lhs_off - *rhs_off;
  }
};
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
268
269
template <typename DType> constexpr bool Sub<DType>::use_lhs;
template <typename DType> constexpr bool Sub<DType>::use_rhs;
270
271
272
273
274
275
276
277
278

template <typename DType>
struct Mul {
  static constexpr bool use_lhs = true;
  static constexpr bool use_rhs = true;
  inline static DType Call(const DType* lhs_off, const DType* rhs_off) {
    return *lhs_off * *rhs_off;
  }
};
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
279
280
template <typename DType> constexpr bool Mul<DType>::use_lhs;
template <typename DType> constexpr bool Mul<DType>::use_rhs;
281
282
283
284
285
286
287
288
289

template <typename DType>
struct Div {
  static constexpr bool use_lhs = true;
  static constexpr bool use_rhs = true;
  inline static DType Call(const DType* lhs_off, const DType* rhs_off) {
    return *lhs_off / *rhs_off;
  }
};
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
290
291
template <typename DType> constexpr bool Div<DType>::use_lhs;
template <typename DType> constexpr bool Div<DType>::use_rhs;
292
293
294
295
296
297
298
299
300

template <typename DType>
struct CopyLhs {
  static constexpr bool use_lhs = true;
  static constexpr bool use_rhs = false;
  inline static DType Call(const DType* lhs_off, const DType* ) {
    return *lhs_off;
  }
};
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
301
302
template <typename DType> constexpr bool CopyLhs<DType>::use_lhs;
template <typename DType> constexpr bool CopyLhs<DType>::use_rhs;
303
304
305
306
307
308
309
310
311

template <typename DType>
struct CopyRhs {
  static constexpr bool use_lhs = false;
  static constexpr bool use_rhs = true;
  inline static DType Call(const DType* , const DType* rhs_off) {
    return *rhs_off;
  }
};
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
312
313
template <typename DType> constexpr bool CopyRhs<DType>::use_lhs;
template <typename DType> constexpr bool CopyRhs<DType>::use_rhs;
314
315
316
317
318
319
320
321
322
323

//////////////////////////////// Reduce operators on CPU ////////////////////////////////
template <typename DType>
struct Max {
  static constexpr DType zero = std::numeric_limits<DType>::lowest();
  // return true if accum should be replaced
  inline static DType Call(DType accum, DType val) {
    return accum < val;
  }
};
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
324
template <typename DType> constexpr DType Max<DType>::zero;
325
326
327
328
329
330
331
332
333

template <typename DType>
struct Min {
  static constexpr DType zero = std::numeric_limits<DType>::max();
  // return true if accum should be replaced
  inline static DType Call(DType accum, DType val) {
    return accum > val;
  }
};
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
334
template <typename DType> constexpr DType Min<DType>::zero;
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

#define SWITCH_OP(op, Op, ...)                                      \
  do {                                                              \
    if ((op) == "add") {                                            \
      typedef dgl::aten::cpu::op::Add<DType> Op;                    \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "sub") {                                     \
      typedef dgl::aten::cpu::op::Sub<DType> Op;                    \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "mul") {                                     \
      typedef dgl::aten::cpu::op::Mul<DType> Op;                    \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "div") {                                     \
      typedef dgl::aten::cpu::op::Div<DType> Op;                    \
      { __VA_ARGS__ }                                               \
350
    } else if ((op) == "copy_lhs") {                                \
351
352
      typedef dgl::aten::cpu::op::CopyLhs<DType> Op;                \
      { __VA_ARGS__ }                                               \
353
    } else if ((op) == "copy_rhs") {                                \
354
355
356
357
358
359
360
361
362
363
364
365
366
367
      typedef dgl::aten::cpu::op::CopyRhs<DType> Op;                \
      { __VA_ARGS__ }                                               \
    } else {                                                        \
      LOG(FATAL) << "Unsupported SpMM binary operator: " << op;     \
    }                                                               \
  } while (0)

}  // namespace op

}  // namespace cpu
}  // namespace aten
}  // namespace dgl

#endif  // DGL_ARRAY_CPU_SPMM_H_