factory.py 14 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import enum
import logging
from typing import Callable, Dict, Union, List, Tuple, Optional
from typing_extensions import Literal
from pathlib import Path
from abc import ABC, abstractmethod, abstractstaticmethod
from .base_model import DGLBaseModel
import yaml
from pydantic import create_model_from_typeddict, create_model, Field
from dgl.dataloading.negative_sampler import GlobalUniform, PerSourceUniform
import inspect
from numpydoc import docscrape
logger = logging.getLogger(__name__)

ALL_PIPELINE = ["nodepred", "nodepred-ns", "linkpred"]

class PipelineBase(ABC):

    @abstractmethod
    def __init__(self) -> None:
        super().__init__()

    @abstractmethod
    def get_cfg_func(self):
        pass

    @abstractstaticmethod
    def gen_script(user_cfg_dict: dict):
        pass

    @abstractstaticmethod
    def get_description() -> str:
        pass


class DataFactoryClass:

    def __init__(self):
        self.registry = {}
        self.pipeline_name = None
        self.pipeline_allowed = {}

    def register(self,
                 name: str,
                 import_code: str,
                 class_name: str,
                 allowed_pipeline: List[str],
                 extra_args={}):
        self.registry[name] = {
            "name": name,
            "import_code": import_code,
            "class_name": class_name,
            "extra_args": extra_args
        }
        for pipeline in allowed_pipeline:
            if pipeline in self.pipeline_allowed:
                self.pipeline_allowed[pipeline].append(name)
            else:
                self.pipeline_allowed[pipeline] = [name]
        return self

    def get_dataset_enum(self):
        enum_class = enum.Enum(
            "DatasetName", {v["name"]: k for k, v in self.registry.items()})
        return enum_class

    def get_dataset_classname(self, name):
        return self.registry[name]["class_name"]

    def get_constructor_arg_type(self, model_name):
        sigs = inspect.signature(self.registry[model_name].__init__)
        type_annotation_dict = {}
        for k, param in dict(sigs.parameters).items():
            type_annotation_dict[k] = param.annotation
        return type_annotation_dict

    def get_pydantic_config(self):

        type_annotation_dict = {}
        dataset_list = []
        for k, v in self.registry.items():
            dataset_name = v["name"]
            type_annotation_dict = v["extra_args"]
            if "name" in type_annotation_dict:
                del type_annotation_dict["name"]
            base = self.get_base_class(dataset_name, self.pipeline_name)
            dataset_list.append(create_model(
                f'{dataset_name}Config', **type_annotation_dict, __base__=base))

        output = dataset_list[0]
        for d in dataset_list[1:]:
            output = Union[output, d]
        return output
    
    def get_import_code(self, name):
        return self.registry[name]["import_code"]

    def get_import_code(self, name):
        return self.registry[name]["import_code"]

    def get_extra_args(self, name):
        return self.registry[name]["extra_args"]

    def get_class_name(self, name):
        return self.registry[name]["class_name"]

    def get_generated_code_dict(self, name, args='**cfg["data"]'):
        d = {}
        d["data_import_code"] = self.registry[name]["import_code"]
        data_initialize_code = self.registry[name]["class_name"]
        extra_args_dict = self.registry[name]["extra_args"]
        if len(extra_args_dict) > 0:
            data_initialize_code = data_initialize_code.format('**cfg["data"]')
        d["data_initialize_code"] = data_initialize_code
        return d
    
    def filter(self, pipeline_name):
        allowed_name = self.pipeline_allowed[pipeline_name]
        new_registry = {k: v for k,v in self.registry.items() if k in allowed_name}
        d = DataFactoryClass()
        d.registry = new_registry
        d.pipeline_name = pipeline_name
        return d

    @staticmethod
    def get_base_class(dataset_name, pipeline_name):
        if pipeline_name == "linkpred":
            class EdgeBase(DGLBaseModel):
                name: Literal[dataset_name]
                split_ratio: Optional[Tuple[float, float, float]] = None
                neg_ratio: Optional[int] = None
            return EdgeBase
        else:
            class NodeBase(DGLBaseModel):
                name: Literal[dataset_name]
                split_ratio: Optional[Tuple[float, float, float]] = None
            return NodeBase
        



DataFactory = DataFactoryClass()

DataFactory.register(
    "cora",
    import_code="from dgl.data import CoraGraphDataset",
    class_name="CoraGraphDataset()",
    allowed_pipeline=["nodepred", "nodepred-ns", "linkpred"])

DataFactory.register(
    "citeseer",
    import_code="from dgl.data import CiteseerGraphDataset",
    class_name="CiteseerGraphDataset()",
    allowed_pipeline=["nodepred", "nodepred-ns", "linkpred"])

DataFactory.register(
    "pubmed",
    import_code="from dgl.data import PubmedGraphDataset",
    class_name="PubmedGraphDataset()",
    allowed_pipeline=["nodepred", "nodepred-ns", "linkpred"])

DataFactory.register(
    "csv",
Jinjing Zhou's avatar
Jinjing Zhou committed
164
    import_code="from dgl.data import CSVDataset",
Jinjing Zhou's avatar
Jinjing Zhou committed
165
    extra_args={"data_path": "./"},
Jinjing Zhou's avatar
Jinjing Zhou committed
166
    class_name="CSVDataset({})",
Jinjing Zhou's avatar
Jinjing Zhou committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    allowed_pipeline=["nodepred", "nodepred-ns", "linkpred"])

DataFactory.register(
    "reddit",
    import_code="from dgl.data import RedditDataset",
    class_name="RedditDataset()",
    allowed_pipeline=["nodepred", "nodepred-ns", "linkpred"])

DataFactory.register(
    "co-buy-computer",
    import_code="from dgl.data import AmazonCoBuyComputerDataset",
    class_name="AmazonCoBuyComputerDataset()",
    allowed_pipeline=["nodepred", "nodepred-ns", "linkpred"])

DataFactory.register(
    "ogbn-arxiv",
    import_code="from ogb.nodeproppred import DglNodePropPredDataset",
    extra_args={},
    class_name="DglNodePropPredDataset('ogbn-arxiv')",
    allowed_pipeline=["nodepred", "nodepred-ns", "linkpred"])

DataFactory.register(
    "ogbn-products",
    import_code="from ogb.nodeproppred import DglNodePropPredDataset",
    extra_args={},
    class_name="DglNodePropPredDataset('ogbn-products')",
    allowed_pipeline=["nodepred", "nodepred-ns", "linkpred"])

DataFactory.register(
    "ogbl-collab",
    import_code="from ogb.linkproppred import DglLinkPropPredDataset",
    extra_args={},
    class_name="DglLinkPropPredDataset('ogbl-collab')",
    allowed_pipeline=["linkpred"])

DataFactory.register(
    "ogbl-citation2",
    import_code="from ogb.linkproppred import DglLinkPropPredDataset",
    extra_args={},
    class_name="DglLinkPropPredDataset('ogbl-citation2')",
    allowed_pipeline=["linkpred"])

class PipelineFactory:
    """ The factory class for creating executors"""

    registry: Dict[str, PipelineBase] = {}
    default_config_registry = {}
    """ Internal registry for available executors """

    @classmethod
    def register(cls, name: str) -> Callable:

        def inner_wrapper(wrapped_class) -> Callable:
            if name in cls.registry:
                logger.warning(
                    'Executor %s already exists. Will replace it', name)
            cls.registry[name] = wrapped_class()
            return wrapped_class

        return inner_wrapper

    @classmethod
    def register_default_config_generator(cls, name: str) -> Callable:

        def inner_wrapper(wrapped_class) -> Callable:
            if name in cls.registry:
                logger.warning(
                    'Executor %s already exists. Will replace it', name)
            cls.default_config_registry[name] = wrapped_class
            return wrapped_class

        return inner_wrapper

    @classmethod
    def call_default_config_generator(cls, generator_name, model_name, dataset_name):
        return cls.default_config_registry[generator_name](model_name, dataset_name)

    @classmethod
    def call_generator(cls, generator_name, cfg):
        return cls.registry[generator_name](cfg)

    @classmethod
    def get_pipeline_enum(cls):
        enum_class = enum.Enum(
            "PipelineName", {k: k for k, v in cls.registry.items()})
        return enum_class


model_dir = Path(__file__).parent.parent / "model"


class ModelFactory:
    """ The factory class for creating executors"""

    def __init__(self):
        self.registry = {}
        self.code_registry = {}
    """ Internal registry for available executors """

    def get_model_enum(self):
        enum_class = enum.Enum(
            "ModelName", {k: k for k, v in self.registry.items()})
        return enum_class

    def register(self, model_name: str) -> Callable:

        def inner_wrapper(wrapped_class) -> Callable:
            if model_name in self.registry:
                logger.warning(
                    'Executor %s already exists. Will replace it', model_name)
            self.registry[model_name] = wrapped_class
            # code_filename = model_dir / filename
            code_filename = Path(inspect.getfile(wrapped_class))
            self.code_registry[model_name] = code_filename.read_text()
            return wrapped_class

        return inner_wrapper

    def get_source_code(self, model_name):
        return self.code_registry[model_name]

    def get_constructor_default_args(self, model_name):
        sigs = inspect.signature(self.registry[model_name].__init__)
        default_map = {}
        for k, param in dict(sigs.parameters).items():
            default_map[k] = param.default
        return default_map

    def get_pydantic_constructor_arg_type(self, model_name: str):
        model_enum = self.get_model_enum()
        arg_dict = self.get_constructor_default_args(model_name)
        type_annotation_dict = {}
        # type_annotation_dict["name"] = Literal[""]
        exempt_keys = ['self', 'in_size', 'out_size', 'data_info']
        for k, param in arg_dict.items():
            if k not in exempt_keys:
                type_annotation_dict[k] = arg_dict[k]

        class Base(DGLBaseModel):
            name: Literal[model_name]
        return create_model(f'{model_name.upper()}ModelConfig', **type_annotation_dict, __base__=Base)

    def get_constructor_doc_dict(self, name):
        model_class = self.registry[name]
        docs = inspect.getdoc(model_class.__init__)
        param_docs = docscrape.NumpyDocString(docs)
        param_docs_dict = {}
        for param in param_docs["Parameters"]:
            param_docs_dict[param.name] = param.desc[0]
        return param_docs_dict

    def get_pydantic_model_config(self):
        model_list = []
        for k in self.registry:
            model_list.append(self.get_pydantic_constructor_arg_type(k))
        output = model_list[0]
        for m in model_list[1:]:
            output = Union[output, m]
        return output

    def get_model_class_name(self, model_name):
        return self.registry[model_name].__name__

    def get_constructor_arg_type(self, model_name):
        sigs = inspect.signature(self.registry[model_name].__init__)
        type_annotation_dict = {}
        for k, param in dict(sigs.parameters).items():
            type_annotation_dict[k] = param.annotation
        return type_annotation_dict


class SamplerFactory:
    """ The factory class for creating executors"""

    def __init__(self):
        self.registry = {}

    def get_model_enum(self):
        enum_class = enum.Enum(
            "NegativeSamplerName", {k: k for k, v in self.registry.items()})
        return enum_class

    def register(self, sampler_name: str) -> Callable:

        def inner_wrapper(wrapped_class) -> Callable:
            if sampler_name in self.registry:
                logger.warning(
                    'Sampler %s already exists. Will replace it', sampler_name)
            self.registry[sampler_name] = wrapped_class
            return wrapped_class

        return inner_wrapper

    def get_constructor_default_args(self, sampler_name):
        sigs = inspect.signature(self.registry[sampler_name].__init__)
        default_map = {}
        for k, param in dict(sigs.parameters).items():
            default_map[k] = param.default
        return default_map

    def get_pydantic_constructor_arg_type(self, sampler_name: str):
        model_enum = self.get_model_enum()
        arg_dict = self.get_constructor_default_args(sampler_name)
        type_annotation_dict = {}
        # type_annotation_dict["name"] = Literal[""]
        exempt_keys = ['self', 'in_size', 'out_size', 'redundancy']
        for k, param in arg_dict.items():
            if k not in exempt_keys or param is None:
                if k == 'k' or k == 'redundancy':
                    type_annotation_dict[k] = 3
                else:
                    type_annotation_dict[k] = arg_dict[k]

        class Base(DGLBaseModel):
            name: Literal[sampler_name]
        return create_model(f'{sampler_name.upper()}SamplerConfig', **type_annotation_dict, __base__=Base)

    def get_pydantic_model_config(self):
        model_list = []
        for k in self.registry:
            model_list.append(self.get_pydantic_constructor_arg_type(k))
        output = model_list[0]
        for m in model_list[1:]:
            output = Union[output, m]
        return output

    def get_model_class_name(self, model_name):
        return self.registry[model_name].__name__

    def get_constructor_arg_type(self, model_name):
        sigs = inspect.signature(self.registry[model_name].__init__)
        type_annotation_dict = {}
        for k, param in dict(sigs.parameters).items():
            type_annotation_dict[k] = param.annotation
        return type_annotation_dict

    def get_constructor_doc_dict(self, name):
        model_class = self.registry[name]
        docs = inspect.getdoc(model_class)
        param_docs = docscrape.NumpyDocString(docs)
        param_docs_dict = {}
        for param in param_docs["Parameters"]:
            param_docs_dict[param.name] = param.desc[0]
        return param_docs_dict


NegativeSamplerFactory = SamplerFactory()
NegativeSamplerFactory.register("uniform")(GlobalUniform)
NegativeSamplerFactory.register("persource")(PerSourceUniform)

NodeModelFactory = ModelFactory()
EdgeModelFactory = ModelFactory()