"docs/source/api/vscode:/vscode.git/clone" did not exist on "3132da2826186cdf3092162be0ec5cf33ee4f4c5"
array_op.h 7.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/array_op.h
 * \brief Array operator templates
 */
#ifndef DGL_ARRAY_ARRAY_OP_H_
#define DGL_ARRAY_ARRAY_OP_H_

#include <dgl/array.h>
10
#include <dgl/graph_traversal.h>
11
#include <vector>
12
13
#include <tuple>
#include <utility>
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

namespace dgl {
namespace aten {
namespace impl {

template <DLDeviceType XPU, typename IdType>
IdArray Full(IdType val, int64_t length, DLContext ctx);

template <DLDeviceType XPU, typename IdType>
IdArray Range(IdType low, IdType high, DLContext ctx);

template <DLDeviceType XPU, typename IdType>
IdArray AsNumBits(IdArray arr, uint8_t bits);

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdArray rhs);

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdType rhs);

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdType lhs, IdArray rhs);

37
38
39
template <DLDeviceType XPU, typename IdType, typename Op>
IdArray UnaryElewise(IdArray array);

40
41
42
template <DLDeviceType XPU, typename IdType>
IdArray HStack(IdArray arr1, IdArray arr2);

43
44
template <DLDeviceType XPU, typename DType, typename IdType>
NDArray IndexSelect(NDArray array, IdArray index);
45

46
47
template <DLDeviceType XPU, typename DType>
DType IndexSelect(NDArray array, uint64_t index);
48

49
50
51
52
53
54
template <DLDeviceType XPU, typename DType, typename IdType>
NDArray Scatter(NDArray array, IdArray indices);

template <DLDeviceType XPU, typename DType, typename IdType>
NDArray Repeat(NDArray array, IdArray repeats);

55
56
57
template <DLDeviceType XPU, typename IdType>
IdArray Relabel_(const std::vector<IdArray>& arrays);

58
59
60
61
62
63
template <DLDeviceType XPU, typename DType>
std::tuple<NDArray, IdArray, IdArray> Pack(NDArray array, DType pad_value);

template <DLDeviceType XPU, typename DType, typename IdType>
std::pair<NDArray, IdArray> ConcatSlices(NDArray array, IdArray lengths);

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// sparse arrays

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray CSRIsNonZero(CSRMatrix csr, runtime::NDArray row, runtime::NDArray col);

template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr);

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray CSRGetRowNNZ(CSRMatrix csr, runtime::NDArray row);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row);

84
template <DLDeviceType XPU, typename IdType>
85
86
runtime::NDArray CSRGetRowData(CSRMatrix csr, int64_t row);

87
template <DLDeviceType XPU, typename IdType>
88
89
runtime::NDArray CSRGetData(CSRMatrix csr, int64_t row, int64_t col);

90
template <DLDeviceType XPU, typename IdType>
91
92
runtime::NDArray CSRGetData(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

93
template <DLDeviceType XPU, typename IdType>
94
95
96
std::vector<runtime::NDArray> CSRGetDataAndIndices(
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

97
template <DLDeviceType XPU, typename IdType>
98
99
100
101
102
103
104
105
106
107
CSRMatrix CSRTranspose(CSRMatrix csr);

// Convert CSR to COO
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOO(CSRMatrix csr);

// Convert CSR to COO using data array as order
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOODataAsOrder(CSRMatrix csr);

108
template <DLDeviceType XPU, typename IdType>
109
110
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end);

111
template <DLDeviceType XPU, typename IdType>
112
113
CSRMatrix CSRSliceRows(CSRMatrix csr, runtime::NDArray rows);

114
template <DLDeviceType XPU, typename IdType>
115
116
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

117
118
119
template <DLDeviceType XPU, typename IdType>
void CSRSort_(CSRMatrix* csr);

Da Zheng's avatar
Da Zheng committed
120
121
122
123
124
125
template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids);

template <DLDeviceType XPU, typename IdType>
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids);

126
127
128
template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRRemove(CSRMatrix csr, IdArray entries);

129
130
131
132
133
134
135
136
137
138
// FloatType is the type of probability data.
template <DLDeviceType XPU, typename IdType, typename FloatType>
COOMatrix CSRRowWiseSampling(
    CSRMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace);

template <DLDeviceType XPU, typename IdType>
COOMatrix CSRRowWiseSamplingUniform(
    CSRMatrix mat, IdArray rows, int64_t num_samples, bool replace);

// FloatType is the type of weight data.
139
template <DLDeviceType XPU, typename IdType, typename DType>
140
COOMatrix CSRRowWiseTopk(
141
    CSRMatrix mat, IdArray rows, int64_t k, NDArray weight, bool ascending);
142
143

///////////////////////////////////////////////////////////////////////////////////////////
Da Zheng's avatar
Da Zheng committed
144

145
146
147
148
149
150
template <DLDeviceType XPU, typename IdType>
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray COOIsNonZero(COOMatrix coo, runtime::NDArray row, runtime::NDArray col);

151
152
153
template <DLDeviceType XPU, typename IdType>
bool COOHasDuplicate(COOMatrix coo);

154
155
156
157
158
159
template <DLDeviceType XPU, typename IdType>
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray COOGetRowNNZ(COOMatrix coo, runtime::NDArray row);

160
template <DLDeviceType XPU, typename IdType>
161
162
163
std::pair<runtime::NDArray, runtime::NDArray>
COOGetRowDataAndIndices(COOMatrix coo, int64_t row);

164
template <DLDeviceType XPU, typename IdType>
165
166
runtime::NDArray COOGetData(COOMatrix coo, int64_t row, int64_t col);

167
template <DLDeviceType XPU, typename IdType>
168
169
170
std::vector<runtime::NDArray> COOGetDataAndIndices(
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);

171
template <DLDeviceType XPU, typename IdType>
172
173
COOMatrix COOTranspose(COOMatrix coo);

174
template <DLDeviceType XPU, typename IdType>
175
176
CSRMatrix COOToCSR(COOMatrix coo);

177
template <DLDeviceType XPU, typename IdType>
178
179
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end);

180
template <DLDeviceType XPU, typename IdType>
181
182
COOMatrix COOSliceRows(COOMatrix coo, runtime::NDArray rows);

183
template <DLDeviceType XPU, typename IdType>
184
185
COOMatrix COOSliceMatrix(COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);

186
187
188
template <DLDeviceType XPU, typename IdType>
std::pair<COOMatrix, IdArray> COOCoalesce(COOMatrix coo);

189
190
191
template <DLDeviceType XPU, typename IdType>
COOMatrix COOSort(COOMatrix mat, bool sort_column);

192
193
194
template <DLDeviceType XPU, typename IdType>
COOMatrix COORemove(COOMatrix coo, IdArray entries);

195
196
197
198
199
200
201
202
203
204
205
206
207
// FloatType is the type of probability data.
template <DLDeviceType XPU, typename IdType, typename FloatType>
COOMatrix COORowWiseSampling(
    COOMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace);

template <DLDeviceType XPU, typename IdType>
COOMatrix COORowWiseSamplingUniform(
    COOMatrix mat, IdArray rows, int64_t num_samples, bool replace);

// FloatType is the type of weight data.
template <DLDeviceType XPU, typename IdType, typename FloatType>
COOMatrix COORowWiseTopk(
    COOMatrix mat, IdArray rows, int64_t k, FloatArray weight, bool ascending);
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
template <DLDeviceType XPU, typename IdType>
Frontiers BFSNodesFrontiers(const CSRMatrix& csr, IdArray source);

template <DLDeviceType XPU, typename IdType>
Frontiers BFSEdgesFrontiers(const CSRMatrix& csr, IdArray source);

template <DLDeviceType XPU, typename IdType>
Frontiers TopologicalNodesFrontiers(const CSRMatrix& csr);

template <DLDeviceType XPU, typename IdType>
Frontiers DGLDFSEdges(const CSRMatrix& csr, IdArray source);

template <DLDeviceType XPU, typename IdType>
Frontiers DGLDFSLabeledEdges(const CSRMatrix& csr,
                             IdArray source,
                             const bool has_reverse_edge,
                             const bool has_nontree_edge,
                             const bool return_labels);

228
229
230
231
232
}  // namespace impl
}  // namespace aten
}  // namespace dgl

#endif  // DGL_ARRAY_ARRAY_OP_H_