main.py 8.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import dgl
import numpy as np
import os
import random
import torch
import torch.optim as optim
from ogb.lsc import DglPCQM4MDataset, PCQM4MEvaluator
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import StepLR
from tqdm import tqdm

from gnn import GNN

reg_criterion = torch.nn.L1Loss()


def collate_dgl(samples):
    graphs, labels = map(list, zip(*samples))
    batched_graph = dgl.batch(graphs)
    labels = torch.stack(labels)

    return batched_graph, labels


def train(model, device, loader, optimizer):
    model.train()
    loss_accum = 0

    for step, (bg, labels) in enumerate(tqdm(loader, desc="Iteration")):
        bg = bg.to(device)
        x = bg.ndata.pop('feat')
        edge_attr = bg.edata.pop('feat')
        labels = labels.to(device)

        pred = model(bg, x, edge_attr).view(-1,)
        optimizer.zero_grad()
        loss = reg_criterion(pred, labels)
        loss.backward()
        optimizer.step()

        loss_accum += loss.detach().cpu().item()

    return loss_accum / (step + 1)


def eval(model, device, loader, evaluator):
    model.eval()
    y_true = []
    y_pred = []

    for step, (bg, labels) in enumerate(tqdm(loader, desc="Iteration")):
        bg = bg.to(device)
        x = bg.ndata.pop('feat')
        edge_attr = bg.edata.pop('feat')
        labels = labels.to(device)

        with torch.no_grad():
            pred = model(bg, x, edge_attr).view(-1, )

        y_true.append(labels.view(pred.shape).detach().cpu())
        y_pred.append(pred.detach().cpu())

    y_true = torch.cat(y_true, dim=0)
    y_pred = torch.cat(y_pred, dim=0)

    input_dict = {"y_true": y_true, "y_pred": y_pred}

    return evaluator.eval(input_dict)["mae"]


def test(model, device, loader):
    model.eval()
    y_pred = []

    for step, (bg, _) in enumerate(tqdm(loader, desc="Iteration")):
        bg = bg.to(device)
        x = bg.ndata.pop('feat')
        edge_attr = bg.edata.pop('feat')

        with torch.no_grad():
            pred = model(bg, x, edge_attr).view(-1, )

        y_pred.append(pred.detach().cpu())

    y_pred = torch.cat(y_pred, dim=0)

    return y_pred


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='GNN baselines on pcqm4m with DGL')
    parser.add_argument('--seed', type=int, default=42,
                        help='random seed to use (default: 42)')
    parser.add_argument('--device', type=int, default=0,
                        help='which gpu to use if any (default: 0)')
    parser.add_argument('--gnn', type=str, default='gin-virtual',
                        help='GNN to use, which can be from '
                             '[gin, gin-virtual, gcn, gcn-virtual] (default: gin-virtual)')
    parser.add_argument('--graph_pooling', type=str, default='sum',
                        help='graph pooling strategy mean or sum (default: sum)')
    parser.add_argument('--drop_ratio', type=float, default=0,
                        help='dropout ratio (default: 0)')
    parser.add_argument('--num_layers', type=int, default=5,
                        help='number of GNN message passing layers (default: 5)')
    parser.add_argument('--emb_dim', type=int, default=600,
                        help='dimensionality of hidden units in GNNs (default: 600)')
    parser.add_argument('--train_subset', action='store_true',
                        help='use 10% of the training set for training')
    parser.add_argument('--batch_size', type=int, default=256,
                        help='input batch size for training (default: 256)')
    parser.add_argument('--epochs', type=int, default=100,
                        help='number of epochs to train (default: 100)')
Mufei Li's avatar
Mufei Li committed
116
117
    parser.add_argument('--num_workers', type=int, default=0,
                        help='number of workers (default: 0)')
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    parser.add_argument('--log_dir', type=str, default="",
                        help='tensorboard log directory. If not specified, '
                             'tensorboard will not be used.')
    parser.add_argument('--checkpoint_dir', type=str, default='',
                        help='directory to save checkpoint')
    parser.add_argument('--save_test_dir', type=str, default='',
                        help='directory to save test submission file')
    args = parser.parse_args()

    print(args)

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    random.seed(args.seed)

    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)
        device = torch.device("cuda:" + str(args.device))
    else:
        device = torch.device("cpu")

    ### automatic dataloading and splitting
    dataset = DglPCQM4MDataset(root='dataset/')

    # split_idx['train'], split_idx['valid'], split_idx['test']
    # separately gives a 1D int64 tensor
    split_idx = dataset.get_idx_split()

    ### automatic evaluator.
    evaluator = PCQM4MEvaluator()

    if args.train_subset:
        subset_ratio = 0.1
        subset_idx = torch.randperm(len(split_idx["train"]))[:int(subset_ratio * len(split_idx["train"]))]
        train_loader = DataLoader(dataset[split_idx["train"][subset_idx]], batch_size=args.batch_size, shuffle=True,
                                  num_workers=args.num_workers, collate_fn=collate_dgl)
    else:
        train_loader = DataLoader(dataset[split_idx["train"]], batch_size=args.batch_size, shuffle=True,
                                  num_workers=args.num_workers, collate_fn=collate_dgl)

    valid_loader = DataLoader(dataset[split_idx["valid"]], batch_size=args.batch_size, shuffle=False,
                              num_workers=args.num_workers, collate_fn=collate_dgl)

161
    if args.save_test_dir != '':
162
163
164
        test_loader = DataLoader(dataset[split_idx["test"]], batch_size=args.batch_size, shuffle=False,
                                 num_workers=args.num_workers, collate_fn=collate_dgl)

165
    if args.checkpoint_dir != '':
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        os.makedirs(args.checkpoint_dir, exist_ok=True)

    shared_params = {
        'num_layers': args.num_layers,
        'emb_dim': args.emb_dim,
        'drop_ratio': args.drop_ratio,
        'graph_pooling': args.graph_pooling
    }

    if args.gnn == 'gin':
        model = GNN(gnn_type='gin', virtual_node=False, **shared_params).to(device)
    elif args.gnn == 'gin-virtual':
        model = GNN(gnn_type='gin', virtual_node=True, **shared_params).to(device)
    elif args.gnn == 'gcn':
        model = GNN(gnn_type='gcn', virtual_node=False, **shared_params).to(device)
    elif args.gnn == 'gcn-virtual':
        model = GNN(gnn_type='gcn', virtual_node=True, **shared_params).to(device)
    else:
        raise ValueError('Invalid GNN type')

    num_params = sum(p.numel() for p in model.parameters())
    print(f'#Params: {num_params}')

    optimizer = optim.Adam(model.parameters(), lr=0.001)

191
    if args.log_dir != '':
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        writer = SummaryWriter(log_dir=args.log_dir)

    best_valid_mae = 1000

    if args.train_subset:
        scheduler = StepLR(optimizer, step_size=300, gamma=0.25)
        args.epochs = 1000
    else:
        scheduler = StepLR(optimizer, step_size=30, gamma=0.25)

    for epoch in range(1, args.epochs + 1):
        print("=====Epoch {}".format(epoch))
        print('Training...')
        train_mae = train(model, device, train_loader, optimizer)

        print('Evaluating...')
        valid_mae = eval(model, device, valid_loader, evaluator)

        print({'Train': train_mae, 'Validation': valid_mae})

212
        if args.log_dir != '':
213
214
215
216
217
            writer.add_scalar('valid/mae', valid_mae, epoch)
            writer.add_scalar('train/mae', train_mae, epoch)

        if valid_mae < best_valid_mae:
            best_valid_mae = valid_mae
218
            if args.checkpoint_dir != '':
219
220
221
222
223
224
225
                print('Saving checkpoint...')
                checkpoint = {'epoch': epoch, 'model_state_dict': model.state_dict(),
                              'optimizer_state_dict': optimizer.state_dict(),
                              'scheduler_state_dict': scheduler.state_dict(), 'best_val_mae': best_valid_mae,
                              'num_params': num_params}
                torch.save(checkpoint, os.path.join(args.checkpoint_dir, 'checkpoint.pt'))

226
            if args.save_test_dir != '':
227
228
229
230
231
232
233
234
235
                print('Predicting on test data...')
                y_pred = test(model, device, test_loader)
                print('Saving test submission file...')
                evaluator.save_test_submission({'y_pred': y_pred}, args.save_test_dir)

        scheduler.step()

        print(f'Best validation MAE so far: {best_valid_mae}')

236
    if args.log_dir != '':
237
238
239
240
        writer.close()

if __name__ == "__main__":
    main()