conv.py 8.81 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import dgl
import dgl.function as fn
import torch
import torch.nn as nn
import torch.nn.functional as F

from dgl.nn.pytorch import SumPooling
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder

### GIN convolution along the graph structure
class GINConv(nn.Module):
    def __init__(self, emb_dim):
        '''
            emb_dim (int): node embedding dimensionality
        '''

        super(GINConv, self).__init__()

        self.mlp = nn.Sequential(nn.Linear(emb_dim, emb_dim),
                                 nn.BatchNorm1d(emb_dim),
                                 nn.ReLU(),
                                 nn.Linear(emb_dim, emb_dim))
        self.eps = nn.Parameter(torch.Tensor([0]))

        self.bond_encoder = BondEncoder(emb_dim = emb_dim)

    def forward(self, g, x, edge_attr):
        with g.local_scope():
            edge_embedding = self.bond_encoder(edge_attr)
            g.ndata['x'] = x
            g.apply_edges(fn.copy_u('x', 'm'))
            g.edata['m'] = F.relu(g.edata['m'] + edge_embedding)
            g.update_all(fn.copy_e('m', 'm'), fn.sum('m', 'new_x'))
            out = self.mlp((1 + self.eps) * x + g.ndata['new_x'])

            return out

### GCN convolution along the graph structure
class GCNConv(nn.Module):
    def __init__(self, emb_dim):
        '''
            emb_dim (int): node embedding dimensionality
        '''

        super(GCNConv, self).__init__()

        self.linear = nn.Linear(emb_dim, emb_dim)
        self.root_emb = nn.Embedding(1, emb_dim)
        self.bond_encoder = BondEncoder(emb_dim = emb_dim)

    def forward(self, g, x, edge_attr):
        with g.local_scope():
            x = self.linear(x)
            edge_embedding = self.bond_encoder(edge_attr)

            # Molecular graphs are undirected
            # g.out_degrees() is the same as g.in_degrees()
            degs = (g.out_degrees().float() + 1).to(x.device)
            norm = torch.pow(degs, -0.5).unsqueeze(-1)                # (N, 1)
            g.ndata['norm'] = norm
            g.apply_edges(fn.u_mul_v('norm', 'norm', 'norm'))

            g.ndata['x'] = x
            g.apply_edges(fn.copy_u('x', 'm'))
            g.edata['m'] = g.edata['norm'] * F.relu(g.edata['m'] + edge_embedding)
            g.update_all(fn.copy_e('m', 'm'), fn.sum('m', 'new_x'))
            out = g.ndata['new_x'] + F.relu(x + self.root_emb.weight) * 1. / degs.view(-1, 1)

            return out

### GNN to generate node embedding
class GNN_node(nn.Module):
    """
    Output:
        node representations
    """
    def __init__(self, num_layers, emb_dim, drop_ratio = 0.5, JK = "last", residual = False, gnn_type = 'gin'):
        '''
            num_layers (int): number of GNN message passing layers
            emb_dim (int): node embedding dimensionality
        '''

        super(GNN_node, self).__init__()
        self.num_layers = num_layers
        self.drop_ratio = drop_ratio
        self.JK = JK
        ### add residual connection or not
        self.residual = residual

        if self.num_layers < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")

        self.atom_encoder = AtomEncoder(emb_dim)

        ###List of GNNs
        self.convs = nn.ModuleList()
        self.batch_norms = nn.ModuleList()

        for layer in range(num_layers):
            if gnn_type == 'gin':
                self.convs.append(GINConv(emb_dim))
            elif gnn_type == 'gcn':
                self.convs.append(GCNConv(emb_dim))
            else:
                ValueError('Undefined GNN type called {}'.format(gnn_type))

            self.batch_norms.append(nn.BatchNorm1d(emb_dim))

    def forward(self, g, x, edge_attr):
        ### computing input node embedding
        h_list = [self.atom_encoder(x)]
        for layer in range(self.num_layers):

            h = self.convs[layer](g, h_list[layer], edge_attr)
            h = self.batch_norms[layer](h)

            if layer == self.num_layers - 1:
                #remove relu for the last layer
                h = F.dropout(h, self.drop_ratio, training = self.training)
            else:
                h = F.dropout(F.relu(h), self.drop_ratio, training = self.training)

            if self.residual:
                h += h_list[layer]

            h_list.append(h)

        ### Different implementations of Jk-concat
        if self.JK == "last":
            node_representation = h_list[-1]
        elif self.JK == "sum":
            node_representation = 0
            for layer in range(self.num_layers):
                node_representation += h_list[layer]

        return node_representation


### Virtual GNN to generate node embedding
class GNN_node_Virtualnode(nn.Module):
    """
    Output:
        node representations
    """
    def __init__(self, num_layers, emb_dim, drop_ratio = 0.5, JK = "last", residual = False, gnn_type = 'gin'):
        '''
            num_layers (int): number of GNN message passing layers
            emb_dim (int): node embedding dimensionality
        '''

        super(GNN_node_Virtualnode, self).__init__()
        self.num_layers = num_layers
        self.drop_ratio = drop_ratio
        self.JK = JK
        ### add residual connection or not
        self.residual = residual

        if self.num_layers < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")

        self.atom_encoder = AtomEncoder(emb_dim)

        ### set the initial virtual node embedding to 0.
        self.virtualnode_embedding = nn.Embedding(1, emb_dim)
        nn.init.constant_(self.virtualnode_embedding.weight.data, 0)

        ### List of GNNs
        self.convs = nn.ModuleList()
        ### batch norms applied to node embeddings
        self.batch_norms = nn.ModuleList()

        ### List of MLPs to transform virtual node at every layer
        self.mlp_virtualnode_list = nn.ModuleList()

        for layer in range(num_layers):
            if gnn_type == 'gin':
                self.convs.append(GINConv(emb_dim))
            elif gnn_type == 'gcn':
                self.convs.append(GCNConv(emb_dim))
            else:
                ValueError('Undefined GNN type called {}'.format(gnn_type))

            self.batch_norms.append(nn.BatchNorm1d(emb_dim))

        for layer in range(num_layers - 1):
            self.mlp_virtualnode_list.append(nn.Sequential(nn.Linear(emb_dim, emb_dim),
                                                           nn.BatchNorm1d(emb_dim),
                                                           nn.ReLU(),
                                                           nn.Linear(emb_dim, emb_dim),
                                                           nn.BatchNorm1d(emb_dim),
                                                           nn.ReLU()))
        self.pool = SumPooling()

    def forward(self, g, x, edge_attr):
        ### virtual node embeddings for graphs
        virtualnode_embedding = self.virtualnode_embedding(
            torch.zeros(g.batch_size).to(x.dtype).to(x.device))

        h_list = [self.atom_encoder(x)]
        batch_id = dgl.broadcast_nodes(g, torch.arange(g.batch_size).to(x.device))
        for layer in range(self.num_layers):
            ### add message from virtual nodes to graph nodes
            h_list[layer] = h_list[layer] + virtualnode_embedding[batch_id]

            ### Message passing among graph nodes
            h = self.convs[layer](g, h_list[layer], edge_attr)
            h = self.batch_norms[layer](h)
            if layer == self.num_layers - 1:
                #remove relu for the last layer
                h = F.dropout(h, self.drop_ratio, training = self.training)
            else:
                h = F.dropout(F.relu(h), self.drop_ratio, training = self.training)

            if self.residual:
                h = h + h_list[layer]

            h_list.append(h)

            ### update the virtual nodes
            if layer < self.num_layers - 1:
                ### add message from graph nodes to virtual nodes
                virtualnode_embedding_temp = self.pool(g, h_list[layer]) + virtualnode_embedding
                ### transform virtual nodes using MLP
                virtualnode_embedding_temp = self.mlp_virtualnode_list[layer](
                    virtualnode_embedding_temp)

                if self.residual:
                    virtualnode_embedding = virtualnode_embedding + F.dropout(
                        virtualnode_embedding_temp, self.drop_ratio, training = self.training)
                else:
                    virtualnode_embedding = F.dropout(
                        virtualnode_embedding_temp, self.drop_ratio, training = self.training)

        ### Different implementations of Jk-concat
        if self.JK == "last":
            node_representation = h_list[-1]
        elif self.JK == "sum":
            node_representation = 0
            for layer in range(self.num_layers):
                node_representation += h_list[layer]

        return node_representation