main.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from ogb.graphproppred import Evaluator
import torch
import numpy as np
from dgl.dataloading import GraphDataLoader
from tqdm import tqdm
import dgl
import random
import torch.nn as nn
from ogb.graphproppred.mol_encoder import AtomEncoder
import torch.nn.functional as F
import torch.optim as optim
import argparse
from torch.utils.data import Dataset
from preprocessing import prepare_dataset

def aggregate_mean(h, vector_field, h_in):
    return torch.mean(h, dim=1)

def aggregate_max(h, vector_field, h_in):
    return torch.max(h, dim=1)[0]

def aggregate_sum(h, vector_field, h_in):
    return torch.sum(h, dim=1)

def aggregate_dir_dx(h, vector_field, h_in, eig_idx=1):
    eig_w = ((vector_field[:, :, eig_idx]) /
             (torch.sum(torch.abs(vector_field[:, :, eig_idx]), keepdim=True, dim=1) + 1e-8)).unsqueeze(-1)
    h_mod = torch.mul(h, eig_w)
    return torch.abs(torch.sum(h_mod, dim=1) - torch.sum(eig_w, dim=1) * h_in)

class FCLayer(nn.Module):
    def __init__(self, in_size, out_size):
        super(FCLayer, self).__init__()

        self.in_size = in_size
        self.out_size = out_size
        self.linear = nn.Linear(in_size, out_size, bias=True)

        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.linear.weight, 1 / self.in_size)
        self.linear.bias.data.zero_()

    def forward(self, x):
        h = self.linear(x)
        return h

class MLP(nn.Module):
    def __init__(self, in_size, out_size):
        super(MLP, self).__init__()

        self.in_size = in_size
        self.out_size = out_size
        self.fc = FCLayer(in_size, out_size)

    def forward(self, x):
        x = self.fc(x)
        return x

class DGNLayer(nn.Module):
    def __init__(self, in_dim, out_dim, dropout, aggregators):
        super().__init__()

        self.dropout = dropout

        self.aggregators = aggregators

        self.batchnorm_h = nn.BatchNorm1d(out_dim)
        self.pretrans = MLP(in_size=2 * in_dim, out_size=in_dim)
        self.posttrans = MLP(in_size=(len(aggregators) * 1 + 1) * in_dim, out_size=out_dim)

    def pretrans_edges(self, edges):
        z2 = torch.cat([edges.src['h'], edges.dst['h']], dim=1)
        vector_field = edges.data['eig']
        return {'e': self.pretrans(z2), 'vector_field': vector_field}

    def message_func(self, edges):
        return {'e': edges.data['e'], 'vector_field': edges.data['vector_field']}

    def reduce_func(self, nodes):
        h_in = nodes.data['h']
        h = nodes.mailbox['e']

        vector_field = nodes.mailbox['vector_field']

        h = torch.cat([aggregate(h, vector_field, h_in) for aggregate in self.aggregators], dim=1)

        return {'h': h}

    def forward(self, g, h, snorm_n):

        g.ndata['h'] = h

        # pretransformation
        g.apply_edges(self.pretrans_edges)

        # aggregation
        g.update_all(self.message_func, self.reduce_func)
        h = torch.cat([h, g.ndata['h']], dim=1)

        # posttransformation
        h = self.posttrans(h)

        # graph and batch normalization
        h = h * snorm_n
        h = self.batchnorm_h(h)
        h = F.relu(h)

        h = F.dropout(h, self.dropout, training=self.training)

        return h

class MLPReadout(nn.Module):

    def __init__(self, input_dim, output_dim, L=2):  # L=nb_hidden_layers
        super().__init__()
        list_FC_layers = [nn.Linear(input_dim // 2 ** l, input_dim // 2 ** (l + 1), bias=True) for l in range(L)]
        list_FC_layers.append(nn.Linear(input_dim // 2 ** L, output_dim, bias=True))
        self.FC_layers = nn.ModuleList(list_FC_layers)
        self.L = L

    def forward(self, x):
        y = x
        for l in range(self.L):
            y = self.FC_layers[l](y)
            y = F.relu(y)
        y = self.FC_layers[self.L](y)
        return y

class DGNNet(nn.Module):
    def __init__(self, hidden_dim=420, out_dim=420, dropout=0.2, n_layers=4):
        super().__init__()

        self.embedding_h = AtomEncoder(emb_dim=hidden_dim)
        self.aggregators = [aggregate_mean, aggregate_sum, aggregate_max, aggregate_dir_dx]

        self.layers = nn.ModuleList([DGNLayer(in_dim=hidden_dim, out_dim=hidden_dim, dropout=dropout, 
                      aggregators=self.aggregators) for _ in range(n_layers - 1)])
        self.layers.append(DGNLayer(in_dim=hidden_dim, out_dim=out_dim, dropout=dropout,
                                    aggregators=self.aggregators))

        # 128 out dim since ogbg-molpcba has 128 tasks
        self.MLP_layer = MLPReadout(out_dim, 128)

    def forward(self, g, h, snorm_n):
        h = self.embedding_h(h)

        for i, conv in enumerate(self.layers):
            h_t = conv(g, h, snorm_n)
            h = h_t

        g.ndata['h'] = h

        hg = dgl.mean_nodes(g, 'h')

        return self.MLP_layer(hg)

    def loss(self, scores, labels):
        is_labeled = labels == labels
        loss = nn.BCEWithLogitsLoss()(scores[is_labeled], labels[is_labeled].float())
        return loss

def train_epoch(model, optimizer, device, data_loader):
    model.train()
    epoch_loss = 0
    epoch_train_AP = 0
    list_scores = []
    list_labels = []
    for iter, (batch_graphs, batch_labels, batch_snorm_n) in enumerate(data_loader):
        batch_graphs = batch_graphs.to(device)
        batch_x = batch_graphs.ndata['feat']  # num x feat
        batch_snorm_n = batch_snorm_n.to(device)
        batch_labels = batch_labels.to(device)
        optimizer.zero_grad()

        batch_scores = model(batch_graphs, batch_x, batch_snorm_n)
        
        loss = model.loss(batch_scores, batch_labels)
        loss.backward()
        optimizer.step()
        epoch_loss += loss.item()
        list_scores.append(batch_scores)
        list_labels.append(batch_labels)

    epoch_loss /= (iter + 1)

    evaluator = Evaluator(name='ogbg-molpcba')
    epoch_train_AP = evaluator.eval({'y_pred': torch.cat(list_scores),
                                        'y_true': torch.cat(list_labels)})['ap']

    return epoch_loss, epoch_train_AP

def evaluate_network(model, device, data_loader):
    model.eval()
    epoch_test_loss = 0
    epoch_test_AP = 0
    with torch.no_grad():
        list_scores = []
        list_labels = []
        for iter, (batch_graphs, batch_labels, batch_snorm_n) in enumerate(data_loader):
            batch_graphs = batch_graphs.to(device)
            batch_x = batch_graphs.ndata['feat']
            batch_snorm_n = batch_snorm_n.to(device)
            batch_labels = batch_labels.to(device)

            batch_scores = model(batch_graphs, batch_x, batch_snorm_n)

            loss = model.loss(batch_scores, batch_labels)
            epoch_test_loss += loss.item()
            list_scores.append(batch_scores)
            list_labels.append(batch_labels)

        epoch_test_loss /= (iter + 1)

        evaluator = Evaluator(name='ogbg-molpcba')
        epoch_test_AP = evaluator.eval({'y_pred': torch.cat(list_scores),
                                           'y_true': torch.cat(list_labels)})['ap']

    return epoch_test_loss, epoch_test_AP

def train(dataset, params):

    trainset, valset, testset = dataset.train, dataset.val, dataset.test
    device = params.device

    print("Training Graphs: ", len(trainset))
    print("Validation Graphs: ", len(valset))
    print("Test Graphs: ", len(testset))

    model = DGNNet()
    model = model.to(device)

    # view model parameters
    total_param = 0
    print("MODEL DETAILS:\n")
    for param in model.parameters():
        total_param += np.prod(list(param.data.size()))
    print('DGN Total parameters:', total_param)

    optimizer = optim.Adam(model.parameters(), lr=0.0008, weight_decay=1e-5)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',
                                                     factor=0.8,
                                                     patience=8,
                                                     verbose=True)

    epoch_train_losses, epoch_val_losses = [], []
    epoch_train_APs, epoch_val_APs, epoch_test_APs = [], [], []

    train_loader = GraphDataLoader(trainset, batch_size=params.batch_size, shuffle=True, collate_fn=dataset.collate, pin_memory=True)
    val_loader = GraphDataLoader(valset, batch_size=params.batch_size, shuffle=False, collate_fn=dataset.collate, pin_memory=True)
    test_loader = GraphDataLoader(testset, batch_size=params.batch_size, shuffle=False, collate_fn=dataset.collate, pin_memory=True)

    with tqdm(range(450), unit='epoch') as t:
        for epoch in t:
            t.set_description('Epoch %d' % epoch)

            epoch_train_loss, epoch_train_ap = train_epoch(model, optimizer, device, train_loader)
            epoch_val_loss, epoch_val_ap = evaluate_network(model, device, val_loader)

            epoch_train_losses.append(epoch_train_loss)
            epoch_val_losses.append(epoch_val_loss)
            epoch_train_APs.append(epoch_train_ap.item())
            epoch_val_APs.append(epoch_val_ap.item())

            _, epoch_test_ap = evaluate_network(model, device, test_loader)

            epoch_test_APs.append(epoch_test_ap.item())

            t.set_postfix(train_loss=epoch_train_loss, 
                          train_AP=epoch_train_ap.item(), val_AP=epoch_val_ap.item(),
                          refresh=False)

            scheduler.step(-epoch_val_ap.item())

            if optimizer.param_groups[0]['lr'] < 1e-5:
                print("\n!! LR EQUAL TO MIN LR SET.")
                break

            print('')

    best_val_epoch = np.argmax(np.array(epoch_val_APs))
    best_train_epoch = np.argmax(np.array(epoch_train_APs))
    best_val_ap = epoch_val_APs[best_val_epoch]
    best_val_test_ap = epoch_test_APs[best_val_epoch]
    best_val_train_ap = epoch_train_APs[best_val_epoch]
    best_train_ap = epoch_train_APs[best_train_epoch]

    print("Best Train AP: {:.4f}".format(best_train_ap))
    print("Best Val AP: {:.4f}".format(best_val_ap))
    print("Test AP of Best Val: {:.4f}".format(best_val_test_ap))
    print("Train AP of Best Val: {:.4f}".format(best_val_train_ap))

class Subset(object):
    def __init__(self, dataset, labels, indices):
        dataset = [dataset[idx] for idx in indices]
        labels = [labels[idx] for idx in indices]
        self.dataset, self.labels = [], []
        for i, g in enumerate(dataset):
            if g.num_nodes() > 5:
                self.dataset.append(g)
                self.labels.append(labels[i])
        self.len = len(self.dataset)

    def __getitem__(self, item):
        return self.dataset[item], self.labels[item]

    def __len__(self):
        return self.len

class PCBADataset(Dataset):
    def __init__(self, name):
        print("[I] Loading dataset %s..." % (name))
        self.name = name
        
        self.dataset, self.split_idx = prepare_dataset(name)
        print("One hot encoding substructure counts... ", end='')
        self.d_id = [1]*self.dataset[0].edata['subgraph_counts'].shape[1]

        for g in self.dataset:
            g.edata['eig'] = g.edata['subgraph_counts'].float()
            
        self.train = Subset(self.dataset, self.split_idx['label'], self.split_idx['train'])
        self.val = Subset(self.dataset, self.split_idx['label'], self.split_idx['valid'])
        self.test = Subset(self.dataset, self.split_idx['label'], self.split_idx['test'])

        print('train, test, val sizes :', len(self.train), len(self.test), len(self.val))
        print("[I] Finished loading.")

    # form a mini batch from a given list of samples = [(graph, label) pairs]
    def collate(self, samples):
        # The input samples is a list of pairs (graph, label).
        graphs, labels = map(list, zip(*samples))
        labels = torch.stack(labels)

        tab_sizes_n = [g.num_nodes() for g in graphs]
        tab_snorm_n = [torch.FloatTensor(size, 1).fill_(1./size) for size in tab_sizes_n]
        snorm_n = torch.cat(tab_snorm_n).sqrt()
        batched_graph = dgl.batch(graphs)

        return batched_graph, labels, snorm_n

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu_id', default=0, type=int, help="Please give a value for gpu id")
    parser.add_argument('--seed', default=41, type=int, help="Please give a value for seed")
    parser.add_argument('--batch_size', default=2048, type=int, help="Please give a value for batch_size")
    args = parser.parse_args()

    # device
    args.device = torch.device("cuda:{}".format(args.gpu_id) if torch.cuda.is_available() else "cpu")
        
    # setting seeds
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)

    dataset = PCBADataset("ogbg-molpcba")
    train(dataset, args)