dataset.py 6.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
''' Code adapted from https://github.com/kavehhassani/mvgrl '''
import os
import re
import numpy as np
import dgl
import torch as th
import networkx as nx
from dgl.data import DGLDataset
from collections import Counter
from scipy.linalg import fractional_matrix_power, inv

''' Compute Personalized Page Ranking'''
def compute_ppr(graph: nx.Graph, alpha=0.2, self_loop=True):
    a = nx.convert_matrix.to_numpy_array(graph)
    if self_loop:
        a = a + np.eye(a.shape[0])                                # A^ = A + I_n
    d = np.diag(np.sum(a, 1))                                     # D^ = Sigma A^_ii
    dinv = fractional_matrix_power(d, -0.5)                       # D^(-1/2)
    at = np.matmul(np.matmul(dinv, a), dinv)                      # A~ = D^(-1/2) x A^ x D^(-1/2)
    return alpha * inv((np.eye(a.shape[0]) - (1 - alpha) * at))   # a(I_n-(1-a)A~)^-1


def download(dataset, datadir):
    os.makedirs(datadir)
    url = 'https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets/{0}.zip'.format(dataset)
    zipfile = os.path.basename(url)
    os.system('wget {0}; unzip {1}'.format(url, zipfile))
    os.system('mv {0}/* {1}'.format(dataset, datadir))
    os.system('rm -r {0}'.format(dataset))
    os.system('rm {0}'.format(zipfile))

def process(dataset):
    src = os.path.join(os.path.dirname(__file__), 'data')
    prefix = os.path.join(src, dataset, dataset)

    # assign each node to the corresponding graph
    graph_node_dict = {}
    with open('{0}_graph_indicator.txt'.format(prefix), 'r') as f:
        for idx, line in enumerate(f):
            graph_node_dict[idx + 1] = int(line.strip('\n'))

    node_labels = []
    if os.path.exists('{0}_node_labels.txt'.format(prefix)):
        with open('{0}_node_labels.txt'.format(prefix), 'r') as f:
            for line in f:
                node_labels += [int(line.strip('\n')) - 1]
            num_unique_node_labels = max(node_labels) + 1
    else:
        print('No node labels')

    node_attrs = []
    if os.path.exists('{0}_node_attributes.txt'.format(prefix)):
        with open('{0}_node_attributes.txt'.format(prefix), 'r') as f:
            for line in f:
                node_attrs.append(
                    np.array([float(attr) for attr in re.split("[,\s]+", line.strip("\s\n")) if attr], dtype=np.float)
                )
    else:
        print('No node attributes')

    graph_labels = []
    unique_labels = set()
    with open('{0}_graph_labels.txt'.format(prefix), 'r') as f:
        for line in f:
            val = int(line.strip('\n'))
            if val not in unique_labels:
                unique_labels.add(val)
            graph_labels.append(val)
    label_idx_dict = {val: idx for idx, val in enumerate(unique_labels)}
    graph_labels = np.array([label_idx_dict[l] for l in graph_labels])

    adj_list = {idx: [] for idx in range(1, len(graph_labels) + 1)}
    index_graph = {idx: [] for idx in range(1, len(graph_labels) + 1)}
    with open('{0}_A.txt'.format(prefix), 'r') as f:
        for line in f:
            u, v = tuple(map(int, line.strip('\n').split(',')))
            adj_list[graph_node_dict[u]].append((u, v))
            index_graph[graph_node_dict[u]] += [u, v]

    for k in index_graph.keys():
        index_graph[k] = [u - 1 for u in set(index_graph[k])]

    graphs, pprs = [], []
    for idx in range(1, 1 + len(adj_list)):
        graph = nx.from_edgelist(adj_list[idx])

        graph.graph['label'] = graph_labels[idx - 1]
        for u in graph.nodes():
            if len(node_labels) > 0:
                node_label_one_hot = [0] * num_unique_node_labels
                node_label = node_labels[u - 1]
                node_label_one_hot[node_label] = 1
                graph.nodes[u]['label'] = node_label_one_hot
            if len(node_attrs) > 0:
                graph.nodes[u]['feat'] = node_attrs[u - 1]
        if len(node_attrs) > 0:
            graph.graph['feat_dim'] = node_attrs[0].shape[0]

        # relabeling
        mapping = {}
        for node_idx, node in enumerate(graph.nodes()):
            mapping[node] = node_idx

        graphs.append(nx.relabel_nodes(graph, mapping))
        pprs.append(compute_ppr(graph, alpha=0.2))

    if 'feat_dim' in graphs[0].graph:
        pass
    else:
        max_deg = max([max(dict(graph.degree).values()) for graph in graphs])
        for graph in graphs:
            for u in graph.nodes(data=True):
                f = np.zeros(max_deg + 1)
                f[graph.degree[u[0]]] = 1.0
                if 'label' in u[1]:
                    f = np.concatenate((np.array(u[1]['label'], dtype=np.float), f))
                graph.nodes[u[0]]['feat'] = f
    return graphs, pprs

def load(dataset):

    basedir = os.path.dirname(os.path.abspath(__file__))
    datadir = os.path.join(basedir, 'data', dataset)

    if not os.path.exists(datadir):
        download(dataset, datadir)
        graphs, diff = process(dataset)
        feat, adj, labels = [], [], []

        for idx, graph in enumerate(graphs):
            adj.append(nx.to_numpy_array(graph))
            labels.append(graph.graph['label'])
            feat.append(np.array(list(nx.get_node_attributes(graph, 'feat').values())))

        adj, diff, feat, labels = np.array(adj), np.array(diff), np.array(feat), np.array(labels)

        np.save(f'{datadir}/adj.npy', adj)
        np.save(f'{datadir}/diff.npy', diff)
        np.save(f'{datadir}/feat.npy', feat)
        np.save(f'{datadir}/labels.npy', labels)
    else:
        adj = np.load(f'{datadir}/adj.npy', allow_pickle=True)
        diff = np.load(f'{datadir}/diff.npy', allow_pickle=True)
        feat = np.load(f'{datadir}/feat.npy', allow_pickle=True)
        labels = np.load(f'{datadir}/labels.npy', allow_pickle=True)

    n_graphs = adj.shape[0]

    graphs = []
    diff_graphs = []
    lbls = []

    for i in range(n_graphs):
        a = adj[i]
        edge_indexes = a.nonzero()

        graph = dgl.graph(edge_indexes)
        graph = graph.add_self_loop()
        graph.ndata['feat'] = th.tensor(feat[i]).float()

        diff_adj = diff[i]
        diff_indexes = diff_adj.nonzero()
        diff_weight = th.tensor(diff_adj[diff_indexes]).float()

        diff_graph = dgl.graph(diff_indexes)
        diff_graph.edata['edge_weight'] = diff_weight
        label = labels[i]
        graphs.append(graph)
        diff_graphs.append(diff_graph)
        lbls.append(label)

    labels = th.tensor(lbls)

    dataset = TUDataset(graphs, diff_graphs, labels)
    return dataset

class TUDataset(DGLDataset):
    def __init__(self, graphs, diff_graphs, labels):
        super(TUDataset, self).__init__(name='tu')
        self.graphs = graphs
        self.diff_graphs = diff_graphs
        self.labels = labels

    def process(self):
        return

    def __len__(self):
        return len(self.graphs)

    def __getitem__(self, idx):
        return self.graphs[idx], self.diff_graphs[idx], self.labels[idx]