model.py 1.47 KB
Newer Older
xnouhz's avatar
xnouhz committed
1
2
3
4
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
Mufei Li's avatar
Mufei Li committed
5
from dgl.nn import GraphConv, JumpingKnowledge
xnouhz's avatar
xnouhz committed
6
7
8
9
10
11
12
13
14
15

class JKNet(nn.Module):
    def __init__(self,
                 in_dim,
                 hid_dim,
                 out_dim,
                 num_layers=1,
                 mode='cat',
                 dropout=0.):
        super(JKNet, self).__init__()
Mufei Li's avatar
Mufei Li committed
16

xnouhz's avatar
xnouhz committed
17
18
19
20
21
22
23
        self.mode = mode
        self.dropout = nn.Dropout(dropout)
        self.layers = nn.ModuleList()
        self.layers.append(GraphConv(in_dim, hid_dim, activation=F.relu))
        for _ in range(num_layers):
            self.layers.append(GraphConv(hid_dim, hid_dim, activation=F.relu))

Mufei Li's avatar
Mufei Li committed
24
25
26
27
28
        if self.mode == 'lstm':
            self.jump = JumpingKnowledge(mode, hid_dim, num_layers)
        else:
            self.jump = JumpingKnowledge(mode)

xnouhz's avatar
xnouhz committed
29
30
31
32
33
34
35
36
37
38
        if self.mode == 'cat':
            hid_dim = hid_dim * (num_layers + 1)

        self.output = nn.Linear(hid_dim, out_dim)
        self.reset_params()

    def reset_params(self):
        self.output.reset_parameters()
        for layers in self.layers:
            layers.reset_parameters()
Mufei Li's avatar
Mufei Li committed
39
        self.jump.reset_parameters()
xnouhz's avatar
xnouhz committed
40
41
42
43
44
45

    def forward(self, g, feats):
        feat_lst = []
        for layer in self.layers:
            feats = self.dropout(layer(g, feats))
            feat_lst.append(feats)
Mufei Li's avatar
Mufei Li committed
46
47

        g.ndata['h'] = self.jump(feat_lst)
xnouhz's avatar
xnouhz committed
48
49
50
        g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))

        return self.output(g.ndata['h'])