main.py 4.35 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
import torch
from sklearn.metrics import f1_score
3
from utils import EarlyStopping, load_data
Mufei Li's avatar
Mufei Li committed
4
5
6
7
8
9
10
11


def score(logits, labels):
    _, indices = torch.max(logits, dim=1)
    prediction = indices.long().cpu().numpy()
    labels = labels.cpu().numpy()

    accuracy = (prediction == labels).sum() / len(prediction)
12
13
    micro_f1 = f1_score(labels, prediction, average="micro")
    macro_f1 = f1_score(labels, prediction, average="macro")
Mufei Li's avatar
Mufei Li committed
14
15
16

    return accuracy, micro_f1, macro_f1

17

Mufei Li's avatar
Mufei Li committed
18
19
20
21
22
23
24
25
26
def evaluate(model, g, features, labels, mask, loss_func):
    model.eval()
    with torch.no_grad():
        logits = model(g, features)
    loss = loss_func(logits[mask], labels[mask])
    accuracy, micro_f1, macro_f1 = score(logits[mask], labels[mask])

    return loss, accuracy, micro_f1, macro_f1

27

Mufei Li's avatar
Mufei Li committed
28
29
30
def main(args):
    # If args['hetero'] is True, g would be a heterogeneous graph.
    # Otherwise, it will be a list of homogeneous graphs.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    (
        g,
        features,
        labels,
        num_classes,
        train_idx,
        val_idx,
        test_idx,
        train_mask,
        val_mask,
        test_mask,
    ) = load_data(args["dataset"])

    if hasattr(torch, "BoolTensor"):
Mufei Li's avatar
Mufei Li committed
45
46
47
48
        train_mask = train_mask.bool()
        val_mask = val_mask.bool()
        test_mask = test_mask.bool()

49
50
51
52
53
    features = features.to(args["device"])
    labels = labels.to(args["device"])
    train_mask = train_mask.to(args["device"])
    val_mask = val_mask.to(args["device"])
    test_mask = test_mask.to(args["device"])
Mufei Li's avatar
Mufei Li committed
54

55
    if args["hetero"]:
Mufei Li's avatar
Mufei Li committed
56
        from model_hetero import HAN
57
58
59
60
61
62
63
64
65
66

        model = HAN(
            meta_paths=[["pa", "ap"], ["pf", "fp"]],
            in_size=features.shape[1],
            hidden_size=args["hidden_units"],
            out_size=num_classes,
            num_heads=args["num_heads"],
            dropout=args["dropout"],
        ).to(args["device"])
        g = g.to(args["device"])
Mufei Li's avatar
Mufei Li committed
67
68
    else:
        from model import HAN
69
70
71
72
73
74
75
76
77
78
79
80

        model = HAN(
            num_meta_paths=len(g),
            in_size=features.shape[1],
            hidden_size=args["hidden_units"],
            out_size=num_classes,
            num_heads=args["num_heads"],
            dropout=args["dropout"],
        ).to(args["device"])
        g = [graph.to(args["device"]) for graph in g]

    stopper = EarlyStopping(patience=args["patience"])
Mufei Li's avatar
Mufei Li committed
81
    loss_fcn = torch.nn.CrossEntropyLoss()
82
83
84
    optimizer = torch.optim.Adam(
        model.parameters(), lr=args["lr"], weight_decay=args["weight_decay"]
    )
Mufei Li's avatar
Mufei Li committed
85

86
    for epoch in range(args["num_epochs"]):
Mufei Li's avatar
Mufei Li committed
87
88
89
90
91
92
93
94
        model.train()
        logits = model(g, features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

95
96
97
98
99
100
        train_acc, train_micro_f1, train_macro_f1 = score(
            logits[train_mask], labels[train_mask]
        )
        val_loss, val_acc, val_micro_f1, val_macro_f1 = evaluate(
            model, g, features, labels, val_mask, loss_fcn
        )
Mufei Li's avatar
Mufei Li committed
101
102
        early_stop = stopper.step(val_loss.data.item(), val_acc, model)

103
104
105
106
107
108
109
110
111
112
113
114
        print(
            "Epoch {:d} | Train Loss {:.4f} | Train Micro f1 {:.4f} | Train Macro f1 {:.4f} | "
            "Val Loss {:.4f} | Val Micro f1 {:.4f} | Val Macro f1 {:.4f}".format(
                epoch + 1,
                loss.item(),
                train_micro_f1,
                train_macro_f1,
                val_loss.item(),
                val_micro_f1,
                val_macro_f1,
            )
        )
Mufei Li's avatar
Mufei Li committed
115
116
117
118
119

        if early_stop:
            break

    stopper.load_checkpoint(model)
120
121
122
123
124
125
126
127
128
    test_loss, test_acc, test_micro_f1, test_macro_f1 = evaluate(
        model, g, features, labels, test_mask, loss_fcn
    )
    print(
        "Test loss {:.4f} | Test Micro f1 {:.4f} | Test Macro f1 {:.4f}".format(
            test_loss.item(), test_micro_f1, test_macro_f1
        )
    )

Mufei Li's avatar
Mufei Li committed
129

130
if __name__ == "__main__":
Mufei Li's avatar
Mufei Li committed
131
132
133
134
    import argparse

    from utils import setup

135
136
137
138
139
140
141
142
143
144
145
146
147
148
    parser = argparse.ArgumentParser("HAN")
    parser.add_argument("-s", "--seed", type=int, default=1, help="Random seed")
    parser.add_argument(
        "-ld",
        "--log-dir",
        type=str,
        default="results",
        help="Dir for saving training results",
    )
    parser.add_argument(
        "--hetero",
        action="store_true",
        help="Use metapath coalescing with DGL's own dataset",
    )
Mufei Li's avatar
Mufei Li committed
149
150
151
152
153
    args = parser.parse_args().__dict__

    args = setup(args)

    main(args)