ginipath.py 8 KB
Newer Older
Ivan Brugere's avatar
Ivan Brugere committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jul  9 13:34:38 2018

@author: ivabruge
"""

"""
Graph Attention Networks
Paper: https://arxiv.org/abs/1710.10903
Code: https://github.com/PetarV-/GAT
"""

import networkx as nx
from dgl.graph import DGLGraph
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
from dataset import load_data, preprocess_features
import numpy as np

class NodeReduceModule(nn.Module):
    def __init__(self, input_dim, num_hidden, num_heads=3, input_dropout=None,
            attention_dropout=None, act=lambda x: F.softmax(F.leaky_relu(x), dim=0)):
        super(NodeReduceModule, self).__init__()
        self.num_heads = num_heads
        self.input_dropout = input_dropout
        self.attention_dropout = attention_dropout
        self.act = act
        self.fc = nn.ModuleList(
                [nn.Linear(input_dim, num_hidden, bias=False)
                    for _ in range(num_heads)])
        self.attention = nn.ModuleList(
                [nn.Linear(num_hidden * 2, 1, bias=False) for _ in range(num_heads)])

    def forward(self, msgs):
        src, dst = zip(*msgs)
        hu = torch.cat(src, dim=0) # neighbor repr
        hv = torch.cat(dst, dim=0)

        msgs_repr = []

        # iterate for each head
        for i in range(self.num_heads):
            # calc W*hself and W*hneigh
            hvv = self.fc[i](hv)
            huu = self.fc[i](hu)
            # calculate W*hself||W*hneigh
            h = torch.cat((hvv, huu), dim=1)
            a = self.act(self.attention[i](h))
            if self.attention_dropout is not None:
                a = F.dropout(a, self.attention_dropout)
            if self.input_dropout is not None:
                hvv = F.dropout(hvv, self.input_dropout)
            h = torch.sum(a * hvv, 0, keepdim=True)
            msgs_repr.append(h)

        return msgs_repr


class NodeUpdateModule(nn.Module):
    def __init__(self, residual, fc, act, aggregator):
        super(NodeUpdateModule, self).__init__()
        
        self.residual = residual
        self.fc = fc
        self.act = act
        self.aggregator = aggregator

    def forward(self, node, msgs_repr):
        # apply residual connection and activation for each head
        for i in range(len(msgs_repr)):
            if self.residual:
                h = self.fc[i](node['h'])
                msgs_repr[i] = msgs_repr[i] + h
            if self.act is not None:
                msgs_repr[i] = self.act(msgs_repr[i])

        # aggregate multi-head results
        h = self.aggregator(msgs_repr)
        c0 = torch.zeros(h.shape)
        if node['c'] is None:
            c0 = torch.zeros(h.shape)
        else:
            c0 = node['c']
        if node['h_i'] is None:
            h0 = torch.zeros(h.shape)
        else:
            h0 = node['h_i']
        lstm = nn.LSTM(input_size=h.shape[1], hidden_size=h.shape[1], num_layers=1)
        
        #add dimension to handle sequential (create sequence of length 1)
        h, (h_i, c) = lstm(h.unsqueeze(0), (h0.unsqueeze(0), c0.unsqueeze(0)))
        
        #remove sequential dim
        h = torch.squeeze(h, 0)
        h_i = torch.squeeze(h, 0)
        c = torch.squeeze(c, 0)
        
        return {'h': h, 'c':c, 'h_i':h_i}

class GiniPath(nn.Module):
    def __init__(self, num_layers, in_dim, num_hidden, num_classes, num_heads,
            activation, input_dropout, attention_dropout, use_residual=False ):
        super(GiniPath, self).__init__()

        self.input_dropout = input_dropout
        self.reduce_layers = nn.ModuleList()
        self.update_layers = nn.ModuleList()
        # hidden layers
        for i in range(num_layers):
            if i == 0:
                last_dim = in_dim
                residual = False
            else:
                last_dim = num_hidden * num_heads # because of concat heads
                residual = use_residual
            self.reduce_layers.append(
                    NodeReduceModule(last_dim, num_hidden, num_heads, input_dropout,
                        attention_dropout))
            self.update_layers.append(
                    NodeUpdateModule(residual, self.reduce_layers[-1].fc, activation,
                        lambda x: torch.cat(x, 1)))
        # projection
        self.reduce_layers.append(
            NodeReduceModule(num_hidden * num_heads, num_classes, 1, input_dropout,
                attention_dropout))
        self.update_layers.append(
            NodeUpdateModule(False, self.reduce_layers[-1].fc, None, sum))

    def forward(self, g):
        g.register_message_func(lambda src, dst, edge: (src['h'], dst['h']))
        for reduce_func, update_func in zip(self.reduce_layers, self.update_layers):
            # apply dropout
            if self.input_dropout is not None:
                # TODO (lingfan): use batched dropout once we have better api
                #                 for global manipulation
                for n in g.nodes():
                    g.node[n]['h'] = F.dropout(g.node[n]['h'], p=self.input_dropout)
                    g.node[n]['c'] = None
                    g.node[n]['h_i'] = None
            g.register_reduce_func(reduce_func)
            g.register_update_func(update_func)
            g.update_all()
        logits = [g.node[n]['h'] for n in g.nodes()]
        logits = torch.cat(logits, dim=0)
        return logits
    def train(self, g, features, labels, epochs, loss_f=torch.nn.NLLLoss, loss_params={}, optimizer=torch.optim.Adam, optimizer_parameters=None, lr=0.001, ignore=[0], quiet=False):
        
        labels = torch.LongTensor(labels)
        print(labels)
        _, labels = torch.max(labels, dim=1)
        # convert labels and masks to tensor
        
        if optimizer_parameters is None:
            optimizer_parameters = self.parameters()
        optimizer_f = optimizer(optimizer_parameters, lr)        
        
        for epoch in range(args.epochs):
            # reset grad
            optimizer_f.zero_grad()
    
            # reset graph states
            for n in g.nodes():
                g.node[n]['h'] = torch.FloatTensor(features[n].toarray())
    
            # forward
            logits = self.forward(g)
            
            loss = loss_f(**loss_params)
            idx = [i for i, a in enumerate(labels) if a not in ignore]
            logits = logits[idx, :]
            labels = labels[idx]
            out = loss(logits, labels)
            
            if not quiet:
                print("epoch {} loss: {}".format(epoch, out))
                
            out.backward()
            optimizer_f.step()

def main(args):
    # dropout parameters
    input_dropout = 0.2
    attention_dropout = 0.2

    # load and preprocess dataset
    adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data(args.dataset)
    features = preprocess_features(features)

    # initialize graph
    g = DGLGraph(adj)

    # create model
    model = GiniPath(args.num_layers,
                features.shape[1],
                args.num_hidden,
                y_train.shape[1],
                args.num_heads,
                F.elu,
                input_dropout,
                attention_dropout,
                args.residual)
    model.train(g, features, y_train, epochs=10)

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GAT')
    parser.add_argument("--dataset", type=str, required=True,
            help="dataset name")
    parser.add_argument("--epochs", type=int, default=10,
            help="training epoch")
    parser.add_argument("--num-heads", type=int, default=3,
            help="number of attentional heads to use")
    parser.add_argument("--num-layers", type=int, default=1,
            help="number of hidden layers")
    parser.add_argument("--num-hidden", type=int, default=8,
            help="size of hidden units")
    parser.add_argument("--residual", action="store_true",
            help="use residual connection")
    parser.add_argument("--lr", type=float, default=0.001,
            help="learning rate")
    args = parser.parse_args()
    print(args)

    main(args)