train_cv_multi_gpu.py 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
import tqdm
import traceback
Jinjing Zhou's avatar
Jinjing Zhou committed
14
import math
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from _thread import start_new_thread
from functools import wraps
from dgl.data import RedditDataset
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel

class SAGEConvWithCV(nn.Module):
    def __init__(self, in_feats, out_feats, activation):
        super().__init__()
        self.W = nn.Linear(in_feats * 2, out_feats)
        self.activation = activation
        self.reset_parameters()

    def reset_parameters(self):
        gain = nn.init.calculate_gain('relu')
        nn.init.xavier_uniform_(self.W.weight, gain=gain)
        nn.init.constant_(self.W.bias, 0)

    def forward(self, block, H, HBar=None):
        if self.training:
            with block.local_scope():
                H_src, H_dst = H
                HBar_src, agg_HBar_dst = HBar
                block.dstdata['agg_hbar'] = agg_HBar_dst
                block.srcdata['hdelta'] = H_src - HBar_src
                block.update_all(fn.copy_u('hdelta', 'm'), fn.mean('m', 'hdelta_new'))
                h_neigh = block.dstdata['agg_hbar'] + block.dstdata['hdelta_new']
                h = self.W(th.cat([H_dst, h_neigh], 1))
                if self.activation is not None:
                    h = self.activation(h)
                return h
        else:
            with block.local_scope():
                H_src, H_dst = H
                block.srcdata['h'] = H_src
                block.update_all(fn.copy_u('h', 'm'), fn.mean('m', 'h_new'))
                h_neigh = block.dstdata['h_new']
                h = self.W(th.cat([H_dst, h_neigh], 1))
                if self.activation is not None:
                    h = self.activation(h)
                return h

class SAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        self.layers.append(SAGEConvWithCV(in_feats, n_hidden, activation))
        for i in range(1, n_layers - 1):
            self.layers.append(SAGEConvWithCV(n_hidden, n_hidden, activation))
        self.layers.append(SAGEConvWithCV(n_hidden, n_classes, None))

    def forward(self, blocks):
        h = blocks[0].srcdata['features']
        updates = []
        for layer, block in zip(self.layers, blocks):
            # We need to first copy the representation of nodes on the RHS from the
            # appropriate nodes on the LHS.
            # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst
            # would be (num_nodes_RHS, D)
            h_dst = h[:block.number_of_dst_nodes()]
            hbar_src = block.srcdata['hist']
            agg_hbar_dst = block.dstdata['agg_hist']
            # Then we compute the updated representation on the RHS.
            # The shape of h now becomes (num_nodes_RHS, D)
            h = layer(block, (h, h_dst), (hbar_src, agg_hbar_dst))
            block.dstdata['h_new'] = h
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = th.arange(g.number_of_nodes())
        for l, layer in enumerate(self.layers):
107
            y = g.ndata['hist_%d' % (l + 1)]
108

109
            for start in tqdm.trange(0, len(nodes), batch_size):
110
111
112
113
114
115
                end = start + batch_size
                batch_nodes = nodes[start:end]
                block = dgl.to_block(dgl.in_subgraph(g, batch_nodes), batch_nodes)
                induced_nodes = block.srcdata[dgl.NID]

                h = x[induced_nodes].to(device)
116
                block = block.to(device)
117
118
119
120
121
122
                h_dst = h[:block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))

                y[start:end] = h.cpu()

            x = y
123
        return y
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197



class NeighborSampler(object):
    def __init__(self, g, fanouts):
        self.g = g
        self.fanouts = fanouts

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(seeds)
        blocks = []
        hist_blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = dgl.sampling.sample_neighbors(self.g, seeds, fanout)
            # For history aggregation we sample all neighbors.
            hist_frontier = dgl.in_subgraph(self.g, seeds)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            hist_block = dgl.to_block(hist_frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
            hist_blocks.insert(0, hist_block)
        return blocks, hist_blocks

# According to https://github.com/pytorch/pytorch/issues/17199, this decorator
# is necessary to make fork() and openmp work together.
#
# TODO: confirm if this is necessary for MXNet and Tensorflow.  If so, we need
# to standardize worker process creation since our operators are implemented with
# OpenMP.
def thread_wrapped_func(func):
    @wraps(func)
    def decorated_function(*args, **kwargs):
        queue = mp.Queue()
        def _queue_result():
            exception, trace, res = None, None, None
            try:
                res = func(*args, **kwargs)
            except Exception as e:
                exception = e
                trace = traceback.format_exc()
            queue.put((res, exception, trace))

        start_new_thread(_queue_result, ())
        result, exception, trace = queue.get()
        if exception is None:
            return result
        else:
            assert isinstance(exception, Exception)
            raise exception.__class__(trace)
    return decorated_function

def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

def evaluate(model, g, labels, val_mask, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_mask``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        inputs = g.ndata['features']
198
        pred = model.inference(g, inputs, batch_size, device)       # also recomputes history tensors
199
200
201
202
203
204
205
    model.train()
    return compute_acc(pred[val_mask], labels[val_mask])

def load_subtensor(g, labels, blocks, hist_blocks, dev_id, aggregation_on_device=False):
    """
    Copys features and labels of a set of nodes onto GPU.
    """
206
207
208
209
    blocks[0].srcdata['features'] = g.ndata['features'][blocks[0].srcdata[dgl.NID]]
    blocks[-1].dstdata['label'] = labels[blocks[-1].dstdata[dgl.NID]]
    ret_blocks = []
    ret_hist_blocks = []
210
211
    for i, (block, hist_block) in enumerate(zip(blocks, hist_blocks)):
        hist_col = 'features' if i == 0 else 'hist_%d' % i
212
        block.srcdata['hist'] = g.ndata[hist_col][block.srcdata[dgl.NID]]
213
214
215
216

        # Aggregate history
        hist_block.srcdata['hist'] = g.ndata[hist_col][hist_block.srcdata[dgl.NID]]
        if aggregation_on_device:
217
218
            hist_block = hist_block.to(dev_id)
            hist_block.srcdata['hist'] = hist_block.srcdata['hist']
219
        hist_block.update_all(fn.copy_u('hist', 'm'), fn.mean('m', 'agg_hist'))
220
221

        block = block.to(dev_id)
222
        if not aggregation_on_device:
223
224
225
226
227
            hist_block = hist_block.to(dev_id)
        block.dstdata['agg_hist'] = hist_block.dstdata['agg_hist']
        ret_blocks.append(block)
        ret_hist_blocks.append(hist_block)
    return ret_blocks, ret_hist_blocks
228

229
230
231
232
233
234
235
def create_history_storage(g, args, n_classes):
    # Initialize history storage
    for l in range(args.num_layers):
        dim = args.num_hidden if l != args.num_layers - 1 else n_classes
        g.ndata['hist_%d' % (l + 1)] = th.zeros(g.number_of_nodes(), dim).share_memory_()

def init_history(g, model, dev_id, batch_size):
236
    with th.no_grad():
237
        model.inference(g, g.ndata['features'], batch_size, dev_id)     # replaces hist_i features in-place
238
239
240
241

def update_history(g, blocks):
    with th.no_grad():
        for i, block in enumerate(blocks):
242
            ids = block.dstdata[dgl.NID].cpu()
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            hist_col = 'hist_%d' % (i + 1)

            h_new = block.dstdata['h_new'].cpu()
            g.ndata[hist_col][ids] = h_new

@thread_wrapped_func
def run(proc_id, n_gpus, args, devices, data):
    dropout = 0.2

    dev_id = devices[proc_id]
    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        world_size = n_gpus
        th.distributed.init_process_group(backend="nccl",
                                          init_method=dist_init_method,
                                          world_size=world_size,
                                          rank=proc_id)
    th.cuda.set_device(dev_id)

    # Unpack data
    train_mask, val_mask, in_feats, labels, n_classes, g = data
265
266
    train_nid = train_mask.nonzero().squeeze()
    val_nid = val_mask.nonzero().squeeze()
267
268

    # Split train_nid
Jinjing Zhou's avatar
Jinjing Zhou committed
269
    train_nid = th.split(train_nid, math.ceil(len(train_nid) // n_gpus))[proc_id]
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

    # Create sampler
    sampler = NeighborSampler(g, [int(_) for _ in args.fan_out.split(',')])

    # Create PyTorch DataLoader for constructing blocks
    dataloader = DataLoader(
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False,
        num_workers=args.num_workers_per_gpu)

    # Define model
    model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu)

    # Move the model to GPU and define optimizer
    model = model.to(dev_id)
    if n_gpus > 1:
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(dev_id)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Compute history tensor and their aggregation before training on CPU
    model.eval()
    if n_gpus > 1:
297
298
        if proc_id == 0:
            init_history(g, model.module, dev_id, args.val_batch_size)
299
300
        th.distributed.barrier()
    else:
301
        init_history(g, model, dev_id, args.val_batch_size)
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    model.train()

    # Training loop
    avg = 0
    iter_tput = []
    for epoch in range(args.num_epochs):
        tic = time.time()
        model.train()
        for step, (blocks, hist_blocks) in enumerate(dataloader):
            if proc_id == 0:
                tic_step = time.time()

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            seeds = blocks[-1].dstdata[dgl.NID]

318
            blocks, hist_blocks = load_subtensor(g, labels, blocks, hist_blocks, dev_id, True)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

            # forward
            batch_pred = model(blocks)
            # update history
            update_history(g, blocks)
            # compute loss
            batch_labels = blocks[-1].dstdata['label']
            loss = loss_fcn(batch_pred, batch_labels)
            # backward
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if proc_id == 0:
                iter_tput.append(len(seeds) * n_gpus / (time.time() - tic_step))
            if step % args.log_every == 0 and proc_id == 0:
                acc = compute_acc(batch_pred, batch_labels)
                print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f}'.format(
                    epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:])))

        if n_gpus > 1:
            th.distributed.barrier()

        toc = time.time()
        if proc_id == 0:
            print('Epoch Time(s): {:.4f}'.format(toc - tic))
            if epoch >= 5:
                avg += toc - tic
            if epoch % args.eval_every == 0 and epoch != 0:
                model.eval()
                eval_acc = evaluate(
                    model if n_gpus == 1 else model.module, g, labels, val_nid, args.val_batch_size, dev_id)
                print('Eval Acc {:.4f}'.format(eval_acc))

    if n_gpus > 1:
        th.distributed.barrier()
    if proc_id == 0:
        print('Avg epoch time: {}'.format(avg / (epoch - 4)))

if __name__ == '__main__':
    argparser = argparse.ArgumentParser("multi-gpu training")
    argparser.add_argument('--gpu', type=str, default='0')
    argparser.add_argument('--num-epochs', type=int, default=20)
    argparser.add_argument('--num-hidden', type=int, default=16)
    argparser.add_argument('--num-layers', type=int, default=2)
    argparser.add_argument('--fan-out', type=str, default='1,1')
    argparser.add_argument('--batch-size', type=int, default=1000)
    argparser.add_argument('--val-batch-size', type=int, default=1000)
    argparser.add_argument('--log-every', type=int, default=20)
    argparser.add_argument('--eval-every', type=int, default=5)
    argparser.add_argument('--lr', type=float, default=0.003)
    argparser.add_argument('--num-workers-per-gpu', type=int, default=0)
    args = argparser.parse_args()
    
    devices = list(map(int, args.gpu.split(',')))
    n_gpus = len(devices)

    # load reddit data
    data = RedditDataset(self_loop=True)
Xiangkun Hu's avatar
Xiangkun Hu committed
377
378
379
    n_classes = data.num_classes
    g = data[0]
    features = g.ndata['feat']
380
    in_feats = features.shape[1]
Xiangkun Hu's avatar
Xiangkun Hu committed
381
382
383
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
384
385
386
    g.ndata['features'] = features.share_memory_()
    create_history_storage(g, args, n_classes)

387
    g.create_format_()
388
389
390
391
392
393
394
395
396
397
398
399
400
    # Pack data
    data = train_mask, val_mask, in_feats, labels, n_classes, g

    if n_gpus == 1:
        run(0, n_gpus, args, devices, data)
    else:
        procs = []
        for proc_id in range(n_gpus):
            p = mp.Process(target=run, args=(proc_id, n_gpus, args, devices, data))
            p.start()
            procs.append(p)
        for p in procs:
            p.join()