model.py 8.32 KB
Newer Older
1
2
3
4
5
6
"""RGCN layer implementation"""
from collections import defaultdict

import torch as th
import torch.nn as nn
import torch.nn.functional as F
7
import dgl
8
import dgl.nn as dglnn
9
import tqdm
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

class RelGraphConvLayer(nn.Module):
    r"""Relational graph convolution layer.

    Parameters
    ----------
    in_feat : int
        Input feature size.
    out_feat : int
        Output feature size.
    rel_names : list[str]
        Relation names.
    num_bases : int, optional
        Number of bases. If is none, use number of relations. Default: None.
    weight : bool, optional
        True if a linear layer is applied after message passing. Default: True
    bias : bool, optional
        True if bias is added. Default: True
    activation : callable, optional
        Activation function. Default: None
    self_loop : bool, optional
        True to include self loop message. Default: False
    dropout : float, optional
        Dropout rate. Default: 0.0
    """
    def __init__(self,
                 in_feat,
                 out_feat,
                 rel_names,
                 num_bases,
                 *,
                 weight=True,
                 bias=True,
                 activation=None,
                 self_loop=False,
                 dropout=0.0):
        super(RelGraphConvLayer, self).__init__()
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.rel_names = rel_names
        self.num_bases = num_bases
        self.bias = bias
        self.activation = activation
        self.self_loop = self_loop

        self.conv = dglnn.HeteroGraphConv({
                rel : dglnn.GraphConv(in_feat, out_feat, norm='right', weight=False, bias=False)
                for rel in rel_names
            })

        self.use_weight = weight
        self.use_basis = num_bases < len(self.rel_names) and weight
        if self.use_weight:
            if self.use_basis:
                self.basis = dglnn.WeightBasis((in_feat, out_feat), num_bases, len(self.rel_names))
            else:
                self.weight = nn.Parameter(th.Tensor(len(self.rel_names), in_feat, out_feat))
                nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu'))

        # bias
        if bias:
            self.h_bias = nn.Parameter(th.Tensor(out_feat))
            nn.init.zeros_(self.h_bias)

        # weight for self loop
        if self.self_loop:
            self.loop_weight = nn.Parameter(th.Tensor(in_feat, out_feat))
            nn.init.xavier_uniform_(self.loop_weight,
                                    gain=nn.init.calculate_gain('relu'))

        self.dropout = nn.Dropout(dropout)

    def forward(self, g, inputs):
        """Forward computation

        Parameters
        ----------
        g : DGLHeteroGraph
            Input graph.
        inputs : dict[str, torch.Tensor]
            Node feature for each node type.

        Returns
        -------
        dict[str, torch.Tensor]
            New node features for each node type.
        """
        g = g.local_var()
        if self.use_weight:
            weight = self.basis() if self.use_basis else self.weight
            wdict = {self.rel_names[i] : {'weight' : w.squeeze(0)}
                     for i, w in enumerate(th.split(weight, 1, dim=0))}
        else:
            wdict = {}
104
        inputs_src, inputs_dst = dglnn.expand_as_pair(inputs, g)
105
        hs = self.conv(g, inputs, mod_kwargs=wdict)
106

107
108
        def _apply(ntype, h):
            if self.self_loop:
109
                h = h + th.matmul(inputs_dst[ntype], self.loop_weight)
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
            if self.bias:
                h = h + self.h_bias
            if self.activation:
                h = self.activation(h)
            return self.dropout(h)
        return {ntype : _apply(ntype, h) for ntype, h in hs.items()}

class RelGraphEmbed(nn.Module):
    r"""Embedding layer for featureless heterograph."""
    def __init__(self,
                 g,
                 embed_size,
                 embed_name='embed',
                 activation=None,
                 dropout=0.0):
        super(RelGraphEmbed, self).__init__()
        self.g = g
        self.embed_size = embed_size
        self.embed_name = embed_name
        self.activation = activation
        self.dropout = nn.Dropout(dropout)

        # create weight embeddings for each node for each relation
        self.embeds = nn.ParameterDict()
        for ntype in g.ntypes:
            embed = nn.Parameter(th.Tensor(g.number_of_nodes(ntype), self.embed_size))
            nn.init.xavier_uniform_(embed, gain=nn.init.calculate_gain('relu'))
            self.embeds[ntype] = embed

    def forward(self, block=None):
        """Forward computation

        Parameters
        ----------
        block : DGLHeteroGraph, optional
            If not specified, directly return the full graph with embeddings stored in
            :attr:`embed_name`. Otherwise, extract and store the embeddings to the block
            graph and return.

        Returns
        -------
        DGLHeteroGraph
            The block graph fed with embeddings.
        """
        return self.embeds

class EntityClassify(nn.Module):
    def __init__(self,
                 g,
                 h_dim, out_dim,
                 num_bases,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False):
        super(EntityClassify, self).__init__()
        self.g = g
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.rel_names = list(set(g.etypes))
        self.rel_names.sort()
        if num_bases < 0 or num_bases > len(self.rel_names):
            self.num_bases = len(self.rel_names)
        else:
            self.num_bases = num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop

        self.embed_layer = RelGraphEmbed(g, self.h_dim)
        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConvLayer(
            self.h_dim, self.h_dim, self.rel_names,
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
            dropout=self.dropout, weight=False))
        # h2h
        for i in range(self.num_hidden_layers):
            self.layers.append(RelGraphConvLayer(
                self.h_dim, self.h_dim, self.rel_names,
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout))
        # h2o
        self.layers.append(RelGraphConvLayer(
            self.h_dim, self.out_dim, self.rel_names,
            self.num_bases, activation=None,
            self_loop=self.use_self_loop))

    def forward(self, h=None, blocks=None):
        if h is None:
            # full graph training
            h = self.embed_layer()
201
202
203
204
205
206
207
        if blocks is None:
            # full graph training
            for layer in self.layers:
                h = layer(self.g, h)
        else:
            # minibatch training
            for layer, block in zip(self.layers, blocks):
208
                h = layer(block, h)
209
        return h
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    def inference(self, g, batch_size, device, num_workers, x=None):
        """Minibatch inference of final representation over all node types.

        ***NOTE***
        For node classification, the model is trained to predict on only one node type's
        label.  Therefore, only that type's final representation is meaningful.
        """

        if x is None:
            x = self.embed_layer()

        for l, layer in enumerate(self.layers):
            y = {
                k: th.zeros(
                    g.number_of_nodes(k),
                    self.h_dim if l != len(self.layers) - 1 else self.out_dim)
                for k in g.ntypes}

            sampler = dgl.sampling.MultiLayerNeighborSampler([None])
            dataloader = dgl.sampling.NodeDataLoader(
                g,
                {k: th.arange(g.number_of_nodes(k)) for k in g.ntypes},
                sampler,
                batch_size=batch_size,
                shuffle=True,
                drop_last=False,
                num_workers=num_workers)

            for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
                block = blocks[0]

                h = {k: x[k][input_nodes[k]].to(device) for k in input_nodes.keys()}
243
                h = layer(block, h)
244
245
246
247
248
249

                for k in h.keys():
                    y[k][output_nodes[k]] = h[k].cpu()

            x = y
        return y