main.py 12.4 KB
Newer Older
Linfang He's avatar
Linfang He committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from collections import defaultdict
import math
import os
import sys
import time

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from numpy import random
from torch.nn.parameter import Parameter
import dgl
import dgl.function as fn

from utils import *


def get_graph(network_data, vocab):
    ''' Build graph, treat all nodes as the same type
    
    Parameters
    ----------
    network_data: a dict
        keys describing the edge types, values representing edges
    vocab: a dict
        mapping node IDs to node indices
    Output
    ------
    DGLHeteroGraph
        a heterogenous graph, with one node type and different edge types
    '''
    graphs = []
    num_nodes = len(vocab)

    for edge_type in network_data:
        tmp_data = network_data[edge_type]
        edges = []
        for edge in tmp_data:
            edges.append((vocab[edge[0]], vocab[edge[1]]))
            edges.append((vocab[edge[1]], vocab[edge[0]]))
        g = dgl.graph(edges, etype=edge_type, num_nodes=num_nodes)
        graphs.append(g)
    graph = dgl.hetero_from_relations(graphs)
    
    return graph


class NeighborSampler(object):
    def __init__(self, g, num_fanouts):
        self.g = g
        self.num_fanouts = num_fanouts
        
    def sample(self, pairs):
        heads, tails, types = zip(*pairs)
        seeds, head_invmap = torch.unique(torch.LongTensor(heads), return_inverse=True)
        blocks = []
        for fanout in reversed(self.num_fanouts):
            sampled_graph = dgl.sampling.sample_neighbors(self.g, seeds, fanout)
            sampled_block = dgl.to_block(sampled_graph, seeds)
            seeds = sampled_block.srcdata[dgl.NID]
            blocks.insert(0, sampled_block)
        return blocks, torch.LongTensor(head_invmap), torch.LongTensor(tails), torch.LongTensor(types)


class DGLGATNE(nn.Module):
    def __init__(self, num_nodes, embedding_size, embedding_u_size, edge_types, edge_type_count, dim_a):
        super(DGLGATNE, self).__init__()
        self.num_nodes = num_nodes
        self.embedding_size = embedding_size
        self.embedding_u_size = embedding_u_size
        self.edge_types = edge_types
        self.edge_type_count = edge_type_count
        self.dim_a = dim_a

        self.node_embeddings = Parameter(torch.FloatTensor(num_nodes, embedding_size))
        self.node_type_embeddings = Parameter(torch.FloatTensor(num_nodes, edge_type_count, embedding_u_size))
        self.trans_weights = Parameter(torch.FloatTensor(edge_type_count, embedding_u_size, embedding_size))
        self.trans_weights_s1 = Parameter(torch.FloatTensor(edge_type_count, embedding_u_size, dim_a))
        self.trans_weights_s2 = Parameter(torch.FloatTensor(edge_type_count, dim_a, 1))

        self.reset_parameters()

    def reset_parameters(self):
        self.node_embeddings.data.uniform_(-1.0, 1.0)
        self.node_type_embeddings.data.uniform_(-1.0, 1.0)
        self.trans_weights.data.normal_(std=1.0 / math.sqrt(self.embedding_size))
        self.trans_weights_s1.data.normal_(std=1.0 / math.sqrt(self.embedding_size))
        self.trans_weights_s2.data.normal_(std=1.0 / math.sqrt(self.embedding_size))

    # embs: [batch_size, embedding_size]
    def forward(self, block):
        input_nodes = block.srcdata[dgl.NID]
        output_nodes = block.dstdata[dgl.NID]
        batch_size = block.number_of_dst_nodes()
        node_embed = self.node_embeddings
        node_type_embed = []

        with block.local_scope():
            for i in range(self.edge_type_count):
                edge_type = self.edge_types[i]
                block.srcdata[edge_type] = self.node_type_embeddings[input_nodes, i]
                block.dstdata[edge_type] = self.node_type_embeddings[output_nodes, i]
                block.update_all(fn.copy_u(edge_type, 'm'), fn.sum('m', edge_type), etype=edge_type)
                node_type_embed.append(block.dstdata[edge_type])
        
            node_type_embed = torch.stack(node_type_embed, 1)  
            tmp_node_type_embed = node_type_embed.unsqueeze(2).view(-1, 1, self.embedding_u_size)  
            trans_w = self.trans_weights.unsqueeze(0).repeat(batch_size, 1, 1, 1).view(
                -1, self.embedding_u_size, self.embedding_size
            )
            trans_w_s1 = self.trans_weights_s1.unsqueeze(0).repeat(batch_size, 1, 1, 1).view(
                -1, self.embedding_u_size, self.dim_a
            )
            trans_w_s2 = self.trans_weights_s2.unsqueeze(0).repeat(batch_size, 1, 1, 1).view(-1, self.dim_a, 1)

            attention = F.softmax(
                torch.matmul(
                    torch.tanh(torch.matmul(tmp_node_type_embed, trans_w_s1)), trans_w_s2
                ).squeeze(2).view(-1, self.edge_type_count),
                dim=1,
            ).unsqueeze(1).repeat(1, self.edge_type_count, 1)  
            
            node_type_embed = torch.matmul(attention, node_type_embed).view(-1, 1, self.embedding_u_size) 
            node_embed = node_embed[output_nodes].unsqueeze(1).repeat(1, self.edge_type_count, 1) + \
                torch.matmul(node_type_embed, trans_w).view(-1, self.edge_type_count, self.embedding_size)
            last_node_embed = F.normalize(node_embed, dim=2)
        
            return last_node_embed  # [batch_size, edge_type_count, embedding_size]


class NSLoss(nn.Module):
    def __init__(self, num_nodes, num_sampled, embedding_size):
        super(NSLoss, self).__init__()
        self.num_nodes = num_nodes  
        self.num_sampled = num_sampled  
        self.embedding_size = embedding_size  
        self.weights = Parameter(torch.FloatTensor(num_nodes, embedding_size))  
        # [ (log(i+2) - log(i+1)) / log(num_nodes + 1)]
        self.sample_weights = F.normalize(
            torch.Tensor(
                [
                    (math.log(k + 2) - math.log(k + 1)) / math.log(num_nodes + 1)
                    for k in range(num_nodes)
                ]
            ),
            dim=0,
        )

        self.reset_parameters()

    def reset_parameters(self):
        self.weights.data.normal_(std=1.0 / math.sqrt(self.embedding_size))

    def forward(self, input, embs, label):
        n = input.shape[0]
        log_target = torch.log(
            torch.sigmoid(torch.sum(torch.mul(embs, self.weights[label]), 1))
        )
        negs = torch.multinomial(
            self.sample_weights, self.num_sampled * n, replacement=True
        ).view(n, self.num_sampled)
        noise = torch.neg(self.weights[negs])
        sum_log_sampled = torch.sum(
            torch.log(torch.sigmoid(torch.bmm(noise, embs.unsqueeze(2)))), 1
        ).squeeze()

        loss = log_target + sum_log_sampled
        return -loss.sum() / n


def train_model(network_data):
    index2word, vocab, type_nodes = generate_vocab(network_data)

    edge_types = list(network_data.keys())  
    num_nodes = len(index2word) 
    edge_type_count = len(edge_types)  
    epochs = args.epoch  
    batch_size = args.batch_size  
    embedding_size = args.dimensions  
    embedding_u_size = args.edge_dim  
    u_num = edge_type_count  
    num_sampled = args.negative_samples 
    dim_a = args.att_dim  
    att_head = 1
    neighbor_samples = args.neighbor_samples

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

    g = get_graph(network_data, vocab)
    all_walks = []
    for i in range(edge_type_count):
        nodes = torch.LongTensor(type_nodes[i] * args.num_walks)
        traces, types = dgl.sampling.random_walk(g, nodes, metapath=[edge_types[i]]*(neighbor_samples-1))
        all_walks.append(traces)

    train_pairs = generate_pairs(all_walks, args.window_size) 
    neighbor_sampler = NeighborSampler(g, [neighbor_samples])
    train_dataloader = torch.utils.data.DataLoader(
        train_pairs, batch_size=batch_size, collate_fn=neighbor_sampler.sample, shuffle=True
    )
    model = DGLGATNE(num_nodes, embedding_size, embedding_u_size, edge_types, edge_type_count, dim_a)
    nsloss = NSLoss(num_nodes, num_sampled, embedding_size)
    model.to(device)
    nsloss.to(device)

    optimizer = torch.optim.Adam([{"params": model.parameters()}, {"params": nsloss.parameters()}], lr=1e-4)

    best_score = 0
    patience = 0
    for epoch in range(epochs):
        model.train()
        random.shuffle(train_pairs)

        data_iter = tqdm.tqdm(
            train_dataloader,
            desc="epoch %d" % (epoch),
            total=(len(train_pairs) + (batch_size - 1)) // batch_size,
            bar_format="{l_bar}{r_bar}",
        )
        avg_loss = 0.0

        for i, (block, head_invmap, tails, block_types) in enumerate(data_iter):
            optimizer.zero_grad()
            # embs: [batch_size, edge_type_count, embedding_size]
            block_types = block_types.to(device)
            embs = model(block[0].to(device))[head_invmap]
            embs = embs.gather(1, block_types.view(-1, 1, 1).expand(embs.shape[0], 1, embs.shape[2]))[:, 0]
            loss = nsloss(block[0].dstdata[dgl.NID][head_invmap].to(device), embs, tails.to(device))
            loss.backward()
            optimizer.step()
            avg_loss += loss.item()

            if i % 5000 == 0:
                post_fix = {
                    "epoch": epoch,
                    "iter": i,
                    "avg_loss": avg_loss / (i + 1),
                    "loss": loss.item(),
                }
                data_iter.write(str(post_fix))

        model.eval()
        # {'1': {}, '2': {}}
        final_model = dict(zip(edge_types, [dict() for _ in range(edge_type_count)]))
        for i in range(num_nodes):
            train_inputs = torch.tensor([i for _ in range(edge_type_count)]).unsqueeze(1).to(device)  # [i, i]
            train_types = torch.tensor(list(range(edge_type_count))).unsqueeze(1).to(device)  # [0, 1]
            pairs = torch.cat((train_inputs, train_inputs, train_types), dim=1)  # (2, 3)
            train_blocks, train_invmap, fake_tails, train_types = neighbor_sampler.sample(pairs)

            node_emb = model(train_blocks[0].to(device))[train_invmap]
            node_emb = node_emb.gather(1, train_types.to(device).view(-1, 1, 1
                ).expand(node_emb.shape[0], 1, node_emb.shape[2])
            )[:, 0]

            for j in range(edge_type_count):
                final_model[edge_types[j]][index2word[i]] = (
                    node_emb[j].cpu().detach().numpy()
                )

        valid_aucs, valid_f1s, valid_prs = [], [], []
        test_aucs, test_f1s, test_prs = [], [], []
        for i in range(edge_type_count):
            if args.eval_type == "all" or edge_types[i] in args.eval_type.split(","):
                tmp_auc, tmp_f1, tmp_pr = evaluate(
                    final_model[edge_types[i]],
                    valid_true_data_by_edge[edge_types[i]],
                    valid_false_data_by_edge[edge_types[i]],
                )
                valid_aucs.append(tmp_auc)
                valid_f1s.append(tmp_f1)
                valid_prs.append(tmp_pr)

                tmp_auc, tmp_f1, tmp_pr = evaluate(
                    final_model[edge_types[i]],
                    testing_true_data_by_edge[edge_types[i]],
                    testing_false_data_by_edge[edge_types[i]],
                )
                test_aucs.append(tmp_auc)
                test_f1s.append(tmp_f1)
                test_prs.append(tmp_pr)
        print("valid auc:", np.mean(valid_aucs))
        print("valid pr:", np.mean(valid_prs))
        print("valid f1:", np.mean(valid_f1s))

        average_auc = np.mean(test_aucs)
        average_f1 = np.mean(test_f1s)
        average_pr = np.mean(test_prs)

        cur_score = np.mean(valid_aucs)
        if cur_score > best_score:
            best_score = cur_score
            patience = 0
        else:
            patience += 1
            if patience > args.patience:
                print("Early Stopping")
                break
    return average_auc, average_f1, average_pr


if __name__ == "__main__":
    args = parse_args()
    file_name = args.input
    print(args)

    training_data_by_type = load_training_data(file_name + "/train.txt")
    valid_true_data_by_edge, valid_false_data_by_edge = load_testing_data(
        file_name + "/valid.txt"
    )
    testing_true_data_by_edge, testing_false_data_by_edge = load_testing_data(
        file_name + "/test.txt"
    )
    start = time.time()
    average_auc, average_f1, average_pr = train_model(training_data_by_type)
    end = time.time()

    print("Overall ROC-AUC:", average_auc)
    print("Overall PR-AUC", average_pr)
    print("Overall F1:", average_f1)
    print("Training Time", end-start)