"vscode:/vscode.git/clone" did not exist on "30ca18f423402ae7704156f027cc91be3eaa5471"
gat.py 1.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
"""
Graph Attention Networks in DGL using SPMV optimization.
References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""

import tensorflow as tf
from tensorflow.keras import layers
import dgl.function as fn
13
from dgl.nn import GATConv
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


class GAT(tf.keras.Model):
    def __init__(self,
                 g,
                 num_layers,
                 in_dim,
                 num_hidden,
                 num_classes,
                 heads,
                 activation,
                 feat_drop,
                 attn_drop,
                 negative_slope,
                 residual):
        super(GAT, self).__init__()
        self.g = g
        self.num_layers = num_layers
        self.gat_layers = []
        self.activation = activation
        # input projection (no residual)
        self.gat_layers.append(GATConv(
            in_dim, num_hidden, heads[0],
            feat_drop, attn_drop, negative_slope, False, self.activation))
        # hidden layers
        for l in range(1, num_layers):
            # due to multi-head, the in_dim = num_hidden * num_heads
            self.gat_layers.append(GATConv(
                num_hidden * heads[l-1], num_hidden, heads[l],
                feat_drop, attn_drop, negative_slope, residual, self.activation))
        # output projection
        self.gat_layers.append(GATConv(
            num_hidden * heads[-2], num_classes, heads[-1],
            feat_drop, attn_drop, negative_slope, residual, None))

    def call(self, inputs):
        h = inputs
        for l in range(self.num_layers):
            h = self.gat_layers[l](self.g, h)
            h = tf.reshape(h, (h.shape[0], -1))
        # output projection
        logits = tf.reduce_mean(self.gat_layers[-1](self.g, h), axis=1)
        return logits