"vscode:/vscode.git/clone" did not exist on "e2bf732bc3dda44f800caa1aa3d2786ee66d93d1"
sudoku.py 2.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
"""
SudokuNN module based on RRN for solving sudoku puzzles
"""

from rrn import RRN
from torch import nn
import torch


class SudokuNN(nn.Module):
    def __init__(self,
                 num_steps,
                 embed_size=16,
                 hidden_dim=96,
                 edge_drop=0.1):
        super(SudokuNN, self).__init__()
        self.num_steps = num_steps

        self.digit_embed = nn.Embedding(10, embed_size)
        self.row_embed = nn.Embedding(9, embed_size)
        self.col_embed = nn.Embedding(9, embed_size)

        self.input_layer = nn.Sequential(
            nn.Linear(3*embed_size, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
        )

        self.lstm = nn.LSTMCell(hidden_dim*2, hidden_dim, bias=False)

        msg_layer = nn.Sequential(
            nn.Linear(2*hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
        )

        self.rrn = RRN(msg_layer, self.node_update_func, num_steps, edge_drop)

        self.output_layer = nn.Linear(hidden_dim, 10)

        self.loss_func = nn.CrossEntropyLoss()

    def forward(self, g, is_training=True):
        labels = g.ndata.pop('a')

        input_digits = self.digit_embed(g.ndata.pop('q'))
        rows = self.row_embed(g.ndata.pop('row'))
        cols = self.col_embed(g.ndata.pop('col'))

        x = self.input_layer(torch.cat([input_digits, rows, cols], -1))
        g.ndata['x'] = x
        g.ndata['h'] = x
        g.ndata['rnn_h'] = torch.zeros_like(x, dtype=torch.float)
        g.ndata['rnn_c'] = torch.zeros_like(x, dtype=torch.float)

        outputs = self.rrn(g, is_training)
        logits = self.output_layer(outputs)

        preds = torch.argmax(logits, -1)

        if is_training:
            labels = torch.stack([labels]*self.num_steps, 0)
        logits = logits.view([-1, 10])
        labels = labels.view([-1])
        loss = self.loss_func(logits, labels)
        return preds, loss

    def node_update_func(self, nodes):
        x, h, m, c = nodes.data['x'], nodes.data['rnn_h'], nodes.data['m'], nodes.data['rnn_c']
        new_h, new_c = self.lstm(torch.cat([x, m], -1), (h, c))
        return {'h': new_h, 'rnn_c': new_c, 'rnn_h': new_h}