gather_mm.cu 18.6 KB
Newer Older
Israt Nisa's avatar
Israt Nisa committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/gather_mm.cu
 * \brief GatherMM C APIs and definitions.
 */
#include <dgl/array.h>
#include <algorithm>  // std::swap
#include "./utils.h"
#include "./functor.cuh"
#include "./atomic.cuh"

namespace dgl {
using namespace cuda;
namespace aten {

namespace {

/*! \brief Call cuBLAS GEMM API for dense matmul operation for float and double. */
template <typename DType>
cublasStatus_t cublasGemm(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n, int k,
    const DType* alpha, const DType* A, int lda,
    const DType* B, int ldb, const DType* beta,
    DType* C, int ldc) {
  LOG(INFO) << "Not supported dtype";
  return CUBLAS_STATUS_EXECUTION_FAILED;
}

29
30
31
32
33
34
35
36
37
38
39
40
#ifdef USE_FP16
template <>
cublasStatus_t cublasGemm<__half>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n, int k,
    const __half* alpha, const __half* A, int lda,
    const __half* B, int ldb, const __half* beta,
    __half* C, int ldc) {
  return cublasHgemm(handle, transa, transb, m, n, k, alpha, A, lda,
      B, ldb, beta, C, ldc);
}
#endif

Israt Nisa's avatar
Israt Nisa committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
template <>
cublasStatus_t cublasGemm<float>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n, int k,
    const float* alpha, const float* A, int lda,
    const float* B, int ldb, const float* beta,
    float* C, int ldc) {
  return cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda,
      B, ldb, beta, C, ldc);
}

template <>
cublasStatus_t cublasGemm<double>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n, int k,
    const double* alpha, const double* A, int lda,
    const double* B, int ldb, const double* beta,
    double* C, int ldc) {
  return cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda,
      B, ldb, beta, C, ldc);
}

}  // namespace

namespace cuda {

/* \Note Each row of A multiplies a segment of matrix of B of dimension in_len * outlen.
  One warp is assigned to process one row of A. Each WARP sequentially multiplies
  one element of A and a row of B to compute partial result of the output. A
  is loaded in shared memory in a coalesced way. Output matrix is loaded in
  registers. B should get benefit from L2 cache.
*/
template <typename Idx, typename DType>
72
__global__ void GatherMMScatterKernel(
Israt Nisa's avatar
Israt Nisa committed
73
74
75
76
77
    const DType* __restrict__ A,
    const DType* __restrict__ B,
    DType* __restrict__ C,
    const Idx* __restrict__ idx_a,
    const Idx* __restrict__ idx_b,
78
79
80
81
82
    const Idx* __restrict__ idx_c,
    const int64_t num_rows,
    const int64_t in_len,
    const int64_t out_len) {

Israt Nisa's avatar
Israt Nisa committed
83
84
85
86
87
88
    unsigned int tId = threadIdx.x;
    unsigned int laneId = tId & 31;
    unsigned int gId = (blockIdx.x * blockDim.x + threadIdx.x);
    unsigned int warpId = gId >> 5;
    unsigned int row = warpId;
    if (row < num_rows) {
89
90
91
92
93
        const unsigned int local_row = row & 3;  // hardcoded for TB size 128 (4 warps)
        const Idx cur_rowA = (idx_a) ? idx_a[row] : row;
        const Idx cur_rowB = (idx_b) ? idx_b[row] : row;
        const Idx cur_rowC = (idx_c) ? idx_c[row] : row;
        const Idx B_offset = cur_rowB * in_len * out_len;
Israt Nisa's avatar
Israt Nisa committed
94
95
96
97
98
        const int sh_a_tile = 64;
        __shared__ DType sh_A[4 * sh_a_tile];
        int a_tile = sh_a_tile;
        for (unsigned int k_start = 0; k_start < in_len; k_start += 64) {
            if ((in_len - k_start) < a_tile) a_tile = in_len - k_start;
99
            // Load A in shared mem in a coalesced way
Israt Nisa's avatar
Israt Nisa committed
100
101
102
103
104
105
106
107
            for (unsigned int l = laneId; l < a_tile; l += 32)
                sh_A[local_row * sh_a_tile + l] = A[cur_rowA * in_len + (k_start + l)];
            __syncwarp();

            for (unsigned int outloop = 0; outloop < out_len; outloop +=32) {
                DType out_reg = 0;  // thread private
                const unsigned int l = laneId;
                if (l < out_len) {
108
                    // iterate over elements of a row of A
Israt Nisa's avatar
Israt Nisa committed
109
110
                    for (unsigned int i = 0; i < a_tile; i++) {
                        const DType a_val =  sh_A[local_row * sh_a_tile + i];
111
                        // iterate over elements of a row of B in parallel
Israt Nisa's avatar
Israt Nisa committed
112
113
                        out_reg += a_val * B[B_offset + ((i + k_start) * out_len + (outloop + l))];
                    }
114
115
116
117
118
                    if (idx_c) {
                      AtomicAdd(C + cur_rowC * out_len + (outloop + l), out_reg);
                    } else {
                      C[cur_rowC * out_len + (outloop + l)] += out_reg;
                    }
Israt Nisa's avatar
Israt Nisa committed
119
120
121
122
123
124
                }
            }
        }
    }
}

125

Israt Nisa's avatar
Israt Nisa committed
126
/* \Note Output matrix is accumulated via atomic operations. Rest of the strategies
127
  are similar to GatherMMKernel. One warp is assigned to process one row of A. Each
Israt Nisa's avatar
Israt Nisa committed
128
129
130
131
132
  WARP sequentially multiplies one element of A and a row of B to compute partial
  result of the output. A is loaded in shared memory in a coalesced way. B should
  get benefit from L2 cache.
*/
template <typename Idx, typename DType>
133
__global__ void GatherMMScatterKernel2(
Israt Nisa's avatar
Israt Nisa committed
134
135
136
137
138
139
    const DType* __restrict__ A,
    const DType* __restrict__ B,
    DType* __restrict__ C,
    const Idx* __restrict__ idx_a,
    const Idx* __restrict__ idx_b,
    const Idx* __restrict__ idx_c,
140
141
142
143
    const int64_t num_rows,
    const int64_t in_len,
    const int64_t out_len) {

Israt Nisa's avatar
Israt Nisa committed
144
145
146
147
148
149
    unsigned int tId = threadIdx.x;
    unsigned int laneId = tId & 31;
    unsigned int gId = (blockIdx.x * blockDim.x + threadIdx.x);
    unsigned int warpId = gId >> 5;
    unsigned int row = warpId;
    if (row < num_rows) {
150
151
152
153
154
        const unsigned int local_row = row & 3;  // hardcoded for TB size 128 (4 warps)
        const Idx row_a = (idx_a) ? idx_a[row] : row;
        const Idx row_b = (idx_b) ? idx_b[row] : row;
        const Idx row_c = (idx_c) ? idx_c[row] : row;
        const Idx C_offset = row_c * in_len * out_len;
Israt Nisa's avatar
Israt Nisa committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        const int sh_a_tile = 64;
        __shared__ DType sh_A[4 * sh_a_tile];
        int a_tile = sh_a_tile;
        for (unsigned int k_start = 0; k_start < in_len; k_start += 64) {
            if ((in_len - k_start) < a_tile) a_tile = in_len - k_start;
            /* Load A in shared mem in a coalesced way */
            for (unsigned int l = laneId; l < a_tile; l += 32)
                sh_A[local_row * sh_a_tile + l] = A[row_a * in_len + (k_start + l)];
            __syncwarp();

            for (unsigned int outloop = 0; outloop < out_len; outloop +=32) {
                DType out_reg = 0;  // thread private
                const unsigned int l = laneId;
                if (l < out_len) {
                    const DType b_val = B[row_b * out_len + (outloop + l)];
                    /* iterate over elements of a row of A */
                    for (unsigned int i = 0; i < a_tile; i++) {
                        const DType a_val = sh_A[local_row * sh_a_tile + i];
                        const Idx C_idx = C_offset + ((i + k_start) * out_len + (outloop + l));
174
                        AtomicAdd(C + C_idx, a_val * b_val);
Israt Nisa's avatar
Israt Nisa committed
175
176
177
178
179
180
181
182
183
                    }
                }
            }
        }
    }
}

}  // namespace cuda

184
185
186
187
188
189
190
191
192
193
/*!
 * \brief Implementation of Gather_mm operator. The input matrix A is
 *        expected to be sorted according to relation type.
 * \param A The input dense matrix of dimension m x k
 * \param B The input dense matrix of dimension k x n
 * \param C The output dense matrix of dimension m x n
 * \param seglen_A The input vector of size R. Each element
 *        is the length of segments of input ``A``
 * \param a_trans Matrix A to be transposed
 * \param b_trans Matrix B to be transposed
Israt Nisa's avatar
Israt Nisa committed
194
195
 */
template <int XPU, typename IdType, int bits>
196
197
198
199
200
void SegmentMM(const NDArray A,
               const NDArray B,
               NDArray C,
               const NDArray seglen_A,
               bool a_trans, bool b_trans) {
Israt Nisa's avatar
Israt Nisa committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    SWITCH_BITS(bits, DType, {
        auto device = runtime::DeviceAPI::Get(A->ctx);
        const DType *A_data = A.Ptr<DType>();
        const DType *B_data = B.Ptr<DType>();
        const IdType* seglen_A_data = seglen_A.Ptr<IdType>();
        DType *C_data = C.Ptr<DType>();
        int64_t A_offset = 0, B_offset = 0, C_offset = 0;
        int64_t m, n, k;
        int64_t num_rel = seglen_A.NumElements();
        DType alpha = 1., beta = 0.;

        auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
        if (!thr_entry->cublas_handle)
            CUBLAS_CALL(cublasCreate(&(thr_entry->cublas_handle)));
        CUBLAS_CALL(cublasSetStream(thr_entry->cublas_handle,
            thr_entry->stream));

218
219
        IdType m_offset = 0;
        for (IdType etype = 0; etype < num_rel; ++etype) {
Israt Nisa's avatar
Israt Nisa committed
220
            m = seglen_A_data[etype];  // rows of A
221
222
223
            CHECK_LE(m_offset + m, A->shape[0]) << "Segment index out of bound of A->shape[0].";
            n = B->shape[2];  // cols of B
            k = B->shape[1];  // cols of A == rows of B
Israt Nisa's avatar
Israt Nisa committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
            int ldb = n, lda = k, ldc = n;
            cublasOperation_t transB = CUBLAS_OP_N;
            cublasOperation_t transA = CUBLAS_OP_N;
            if (b_trans) {
                transB = CUBLAS_OP_T;
                ldb = n, lda = n, ldc = k;
                std::swap(n, k);
            }
            CUBLAS_CALL(cublasGemm<DType>(
                thr_entry->cublas_handle,
                transB,
                transA,
                n, m, k,
                &alpha,
                B_data + B_offset, ldb,
                A_data + A_offset, lda,
                &beta,
                C_data + C_offset, ldc));
            A_offset += m * k;
            B_offset += k * n;
            C_offset += m * n;
245
            m_offset += m;
Israt Nisa's avatar
Israt Nisa committed
246
247
248
249
250
        }
    });
}

template <int XPU, typename IdType, int bits>
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
void SegmentMMBackwardB(const NDArray A,
                        const NDArray dC,
                        NDArray dB,
                        const NDArray seglen) {
    SWITCH_BITS(bits, DType, {
        auto device = runtime::DeviceAPI::Get(A->ctx);
        const DType *A_data = A.Ptr<DType>();
        const DType *dC_data = dC.Ptr<DType>();
        const IdType* seglen_data = seglen.Ptr<IdType>();
        DType *dB_data = dB.Ptr<DType>();
        int64_t A_offset = 0, dC_offset = 0, dB_offset = 0;
        int64_t m, n, k;
        int64_t num_rel = seglen.NumElements();
        DType alpha = 1., beta = 1.;

        auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
        if (!thr_entry->cublas_handle)
            CUBLAS_CALL(cublasCreate(&(thr_entry->cublas_handle)));
        CUBLAS_CALL(cublasSetStream(thr_entry->cublas_handle,
            thr_entry->stream));

        IdType k_offset = 0;
        for (IdType etype = 0; etype < num_rel; ++etype) {
            m = dC->shape[1];
            n = A->shape[1];
            k = seglen_data[etype];
            CHECK_LE(k_offset + k, A->shape[0]) << "Segement index out of bound of A->shape[0].";
            int lddC = m, ldA = n, lddB = m;
            cublasOperation_t trans_dC = CUBLAS_OP_N;
            cublasOperation_t trans_A = CUBLAS_OP_T;
            CUBLAS_CALL(cublasGemm<DType>(
                thr_entry->cublas_handle,
                trans_dC,
                trans_A,
                m, n, k,
                &alpha,
                dC_data + dC_offset, lddC,
                A_data + A_offset, ldA,
                &beta,
                dB_data + dB_offset, lddB));
            dC_offset += m * k;
            A_offset += n * k;
            dB_offset += m * n;
            k_offset += k;
        }
    });
Israt Nisa's avatar
Israt Nisa committed
297
298
299
300
301
302
303
304
305
306
307
}

/*!
 * \brief Implementation of Gather_mm operator. The input matrix A is
 *        expected to be sorted according to relation type.
 * \param A The input dense matrix of dimension m x k
 * \param B The input dense matrix of dimension k x n
 * \param C The output dense matrix of dimension m x n
 * \param idx_a The input vector to gather left hand operand on
 * \param idx_b The input vector to gather right hand operand on
 */
308

Israt Nisa's avatar
Israt Nisa committed
309
template <int XPU, typename IdType, int bits>
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
void GatherMM(const NDArray A,
              const NDArray B,
              NDArray C,
              const NDArray idx_a,
              const NDArray idx_b) {
  SWITCH_BITS(bits, DType, {
        auto device = runtime::DeviceAPI::Get(A->ctx);
        auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
        int64_t out_len = B->shape[2];  // cols of B
        int64_t in_len = A->shape[1];  // cols of A
        const int64_t tot_num_rows = A->shape[0];
        const int ntx = 128;
        const int warp_size = 32;
        const int nbx = ((tot_num_rows * warp_size + ntx - 1) / ntx);
        const dim3 nblks(nbx);
        const dim3 nthrs(ntx);
        CUDA_KERNEL_CALL((cuda::GatherMMScatterKernel<IdType, DType>),
            nblks, nthrs, 0, thr_entry->stream,
            A.Ptr<DType>(),
            B.Ptr<DType>(),
            C.Ptr<DType>(),
            idx_a.Ptr<IdType>(),
            idx_b.Ptr<IdType>(),
            nullptr,
            tot_num_rows, in_len, out_len);
    });
Israt Nisa's avatar
Israt Nisa committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
}

/*!
 * \brief Implementation of Gather_mm operator. The input matrix A is
 *        expected to be sorted according to relation type.
 * \param A The input dense matrix of dimension m x k
 * \param B The input dense matrix of dimension k x n
 * \param C The output dense matrix of dimension m x n
 * \param idx_a The input vector to gather left hand operand on
 * \param idx_b The input vector to gather right hand operand on
 * \param idx_c The input vector to gather output operand on
 * \param num_rel The number of idx types in idx_b
 * \param a_trans Matrix A to be transposed
 * \param b_trans Matrix B to be transposed
 */
template <int XPU, typename IdType, int bits>
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
void GatherMMScatter(const NDArray A,
                     const NDArray B,
                     NDArray C,
                     const NDArray idx_a,
                     const NDArray idx_b,
                     const NDArray idx_c) {
    SWITCH_BITS(bits, DType, {
        auto device = runtime::DeviceAPI::Get(A->ctx);
        auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
        const IdType *idx_c_data = idx_c.Ptr<IdType>();
        int64_t out_len = (B->ndim == 2)? B->shape[1] : B->shape[2];  // cols of B
        int64_t in_len = A->shape[1];  // cols of A
        int64_t tot_num_rows = A->shape[0];
        const int ntx = 128;
        const int warp_size = 32;
        const int nbx = ((tot_num_rows * warp_size + ntx - 1) / ntx);
        const dim3 nblks(nbx);
        const dim3 nthrs(ntx);
        if (B->ndim == 3) {
          CUDA_KERNEL_CALL((cuda::GatherMMScatterKernel<IdType, DType>),
              nblks, nthrs, 0, thr_entry->stream,
              A.Ptr<DType>(),
              B.Ptr<DType>(),
              C.Ptr<DType>(),
              idx_a.Ptr<IdType>(),
              idx_b.Ptr<IdType>(),
              idx_c.Ptr<IdType>(),
              tot_num_rows, in_len, out_len);
        } else {
          // Custom kernel for W_grad[idx_c[i]] = H^T[i] * C.grad[i]
          // This kernel accesses rows of A in a transposed way w/o explicitly converting A
          CUDA_KERNEL_CALL((cuda::GatherMMScatterKernel2<IdType, DType>),
              nblks, nthrs, 0, thr_entry->stream,
              A.Ptr<DType>(),
              B.Ptr<DType>(),
              C.Ptr<DType>(),
              idx_a.Ptr<IdType>(),
              idx_b.Ptr<IdType>(),
              idx_c.Ptr<IdType>(),
              tot_num_rows, in_len, out_len);
        }
    });
Israt Nisa's avatar
Israt Nisa committed
394
395
396
}


397
template void GatherMM<kDLGPU, int32_t, 16>(
Israt Nisa's avatar
Israt Nisa committed
398
    const NDArray A, const NDArray B, NDArray C,
399
400
    const NDArray idx_a, const NDArray idx_b);
template void GatherMM<kDLGPU, int64_t, 16>(
Israt Nisa's avatar
Israt Nisa committed
401
    const NDArray A, const NDArray B, NDArray C,
402
403
    const NDArray idx_a, const NDArray idx_b);
template void GatherMM<kDLGPU, int32_t, 32>(
Israt Nisa's avatar
Israt Nisa committed
404
    const NDArray A, const NDArray B, NDArray C,
405
406
    const NDArray idx_a, const NDArray idx_b);
template void GatherMM<kDLGPU, int64_t, 32>(
Israt Nisa's avatar
Israt Nisa committed
407
    const NDArray A, const NDArray B, NDArray C,
408
409
    const NDArray idx_a, const NDArray idx_b);
template void GatherMM<kDLGPU, int32_t, 64>(
Israt Nisa's avatar
Israt Nisa committed
410
    const NDArray A, const NDArray B, NDArray C,
411
412
    const NDArray idx_a, const NDArray idx_b);
template void GatherMM<kDLGPU, int64_t, 64>(
Israt Nisa's avatar
Israt Nisa committed
413
    const NDArray A, const NDArray B, NDArray C,
414
    const NDArray idx_a, const NDArray idx_b);
Israt Nisa's avatar
Israt Nisa committed
415

416
template void GatherMMScatter<kDLGPU, int32_t, 16>(
Israt Nisa's avatar
Israt Nisa committed
417
    const NDArray A, const NDArray B, NDArray C,
418
419
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
template void GatherMMScatter<kDLGPU, int64_t, 16>(
Israt Nisa's avatar
Israt Nisa committed
420
    const NDArray A, const NDArray B, NDArray C,
421
422
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
template void GatherMMScatter<kDLGPU, int32_t, 32>(
Israt Nisa's avatar
Israt Nisa committed
423
    const NDArray A, const NDArray B, NDArray C,
424
425
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
template void GatherMMScatter<kDLGPU, int64_t, 32>(
Israt Nisa's avatar
Israt Nisa committed
426
    const NDArray A, const NDArray B, NDArray C,
427
428
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
template void GatherMMScatter<kDLGPU, int32_t, 64>(
Israt Nisa's avatar
Israt Nisa committed
429
    const NDArray A, const NDArray B, NDArray C,
430
431
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
template void GatherMMScatter<kDLGPU, int64_t, 64>(
Israt Nisa's avatar
Israt Nisa committed
432
    const NDArray A, const NDArray B, NDArray C,
433
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
Israt Nisa's avatar
Israt Nisa committed
434

435
template void SegmentMM<kDLGPU, int32_t, 16>(
Israt Nisa's avatar
Israt Nisa committed
436
437
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
438
template void SegmentMM<kDLGPU, int64_t, 16>(
Israt Nisa's avatar
Israt Nisa committed
439
440
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
441
template void SegmentMM<kDLGPU, int32_t, 32>(
Israt Nisa's avatar
Israt Nisa committed
442
443
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
444
template void SegmentMM<kDLGPU, int64_t, 32>(
Israt Nisa's avatar
Israt Nisa committed
445
446
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
447
template void SegmentMM<kDLGPU, int32_t, 64>(
Israt Nisa's avatar
Israt Nisa committed
448
449
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
450
template void SegmentMM<kDLGPU, int64_t, 64>(
Israt Nisa's avatar
Israt Nisa committed
451
452
453
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);

454
455
456
457
458
459
460
461
462
463
464
465
466
template void SegmentMMBackwardB<kDLGPU, int32_t, 16>(
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
template void SegmentMMBackwardB<kDLGPU, int64_t, 16>(
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
template void SegmentMMBackwardB<kDLGPU, int32_t, 32>(
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
template void SegmentMMBackwardB<kDLGPU, int64_t, 32>(
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
template void SegmentMMBackwardB<kDLGPU, int32_t, 64>(
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
template void SegmentMMBackwardB<kDLGPU, int64_t, 64>(
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);

Israt Nisa's avatar
Israt Nisa committed
467
468
}  // namespace aten
}  // namespace dgl