model_sampling.py 7.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import dgl
import torch as th
import numpy as np
import torch.nn as nn
import dgl.function as fn


def _l1_dist(edges):
    # formula 2
    ed = th.norm(edges.src['nd'] - edges.dst['nd'], 1, 1)
    return {'ed': ed}


class CARESampler(dgl.dataloading.BlockSampler):
    def __init__(self, p, dists, num_layers):
Xin Yao's avatar
Xin Yao committed
16
        super().__init__()
17
18
        self.p = p
        self.dists = dists
Xin Yao's avatar
Xin Yao committed
19
        self.num_layers = num_layers
20
21
22
23
24
25
26
27
28

    def sample_frontier(self, block_id, g, seed_nodes, *args, **kwargs):
        with g.local_scope():
            new_edges_masks = {}
            for etype in g.canonical_etypes:
                edge_mask = th.zeros(g.number_of_edges(etype))
                # extract each node from dict because of single node type
                for node in seed_nodes:
                    edges = g.in_edges(node, form='eid', etype=etype)
29
                    num_neigh = th.ceil(g.in_degrees(node, etype=etype) * self.p[block_id][etype]).int().item()
30
                    neigh_dist = self.dists[block_id][etype][edges]
31
                    if neigh_dist.shape[0] > num_neigh:
Xin Yao's avatar
Xin Yao committed
32
                        neigh_index = np.argpartition(neigh_dist, num_neigh)[:num_neigh]
33
34
                    else:
                        neigh_index = np.arange(num_neigh)
35
36
37
38
39
                    edge_mask[edges[neigh_index]] = 1
                new_edges_masks[etype] = edge_mask.bool()

            return dgl.edge_subgraph(g, new_edges_masks, relabel_nodes=False)

Xin Yao's avatar
Xin Yao committed
40
41
42
43
44
45
46
47
48
49
50
51
52
    def sample_blocks(self, g, seed_nodes, exclude_eids=None):
        output_nodes = seed_nodes
        blocks = []
        for block_id in reversed(range(self.num_layers)):
            frontier = self.sample_frontier(block_id, g, seed_nodes)
            eid = frontier.edata[dgl.EID]
            block = dgl.to_block(frontier, seed_nodes)
            block.edata[dgl.EID] = eid
            seed_nodes = block.srcdata[dgl.NID]
            blocks.insert(0, block)

        return seed_nodes, output_nodes, blocks

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    def __len__(self):
        return self.num_layers


class CAREConv(nn.Module):
    """One layer of CARE-GNN."""

    def __init__(self, in_dim, out_dim, num_classes, edges, activation=None, step_size=0.02):
        super(CAREConv, self).__init__()

        self.activation = activation
        self.step_size = step_size
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.num_classes = num_classes
        self.edges = edges

        self.linear = nn.Linear(self.in_dim, self.out_dim)
        self.MLP = nn.Linear(self.in_dim, self.num_classes)

        self.p = {}
        self.last_avg_dist = {}
        self.f = {}
76
        # indicate whether the RL converges
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        self.cvg = {}
        for etype in edges:
            self.p[etype] = 0.5
            self.last_avg_dist[etype] = 0
            self.f[etype] = []
            self.cvg[etype] = False

    def forward(self, g, feat):
        g.srcdata['h'] = feat

        # formula 8
        hr = {}
        for etype in g.canonical_etypes:
            g.update_all(fn.copy_u('h', 'm'), fn.mean('m', 'hr'), etype=etype)
            hr[etype] = g.dstdata['hr']
            if self.activation is not None:
                hr[etype] = self.activation(hr[etype])

        # formula 9 using mean as inter-relation aggregator
        p_tensor = th.Tensor(list(self.p.values())).view(-1, 1, 1).to(feat.device)
        h_homo = th.sum(th.stack(list(hr.values())) * p_tensor, dim=0)
        h_homo += feat[:g.number_of_dst_nodes()]
        if self.activation is not None:
            h_homo = self.activation(h_homo)

        return self.linear(h_homo)


class CAREGNN(nn.Module):
    def __init__(self,
                 in_dim,
                 num_classes,
                 hid_dim=64,
                 edges=None,
                 num_layers=2,
                 activation=None,
                 step_size=0.02):
        super(CAREGNN, self).__init__()
        self.in_dim = in_dim
        self.hid_dim = hid_dim
        self.num_classes = num_classes
        self.edges = edges
        self.num_layers = num_layers
        self.activation = activation
        self.step_size = step_size

        self.layers = nn.ModuleList()

        if self.num_layers == 1:
            # Single layer
            self.layers.append(CAREConv(self.in_dim,
                                        self.num_classes,
                                        self.num_classes,
                                        self.edges,
                                        activation=self.activation,
                                        step_size=self.step_size))

        else:
            # Input layer
            self.layers.append(CAREConv(self.in_dim,
                                        self.hid_dim,
                                        self.num_classes,
                                        self.edges,
                                        activation=self.activation,
                                        step_size=self.step_size))

            # Hidden layers with n - 2 layers
            for i in range(self.num_layers - 2):
                self.layers.append(CAREConv(self.hid_dim,
                                            self.hid_dim,
                                            self.num_classes,
                                            self.edges,
                                            activation=self.activation,
                                            step_size=self.step_size))

            # Output layer
            self.layers.append(CAREConv(self.hid_dim,
                                        self.num_classes,
                                        self.num_classes,
                                        self.edges,
                                        activation=self.activation,
                                        step_size=self.step_size))

    def forward(self, blocks, feat):
        # formula 4
        sim = th.tanh(self.layers[0].MLP(blocks[-1].dstdata['feature'].float()))

        # Forward of n layers of CARE-GNN
        for block, layer in zip(blocks, self.layers):
            feat = layer(block, feat)
        return feat, sim

    def RLModule(self, graph, epoch, idx, dists):
        for i, layer in enumerate(self.layers):
            for etype in self.edges:
172
                if not layer.cvg[etype]:
173
174
175
176
177
178
179
                    # formula 5
                    eid = graph.in_edges(idx, form='eid', etype=etype)
                    avg_dist = th.mean(dists[i][etype][eid])

                    # formula 6
                    if layer.last_avg_dist[etype] < avg_dist:
                        layer.p[etype] -= self.step_size
180
181
182
183
                        layer.f[etype].append(-1)
                        # avoid overflow, follow the author's implement
                        if layer.p[etype] < 0:
                            layer.p[etype] = 0.001
184
185
                    else:
                        layer.p[etype] += self.step_size
186
187
188
189
                        layer.f[etype].append(+1)
                        if layer.p[etype] > 1:
                            layer.p[etype] = 0.999
                    layer.last_avg_dist[etype] = avg_dist
190
191

                    # formula 7
192
193
                    if epoch >= 9 and abs(sum(layer.f[etype][-10:])) <= 2:
                        layer.cvg[etype] = True